# Multi-sampled Photon Differentials

Incorporating the View Ray Differential in the Radiance Estimate

Lasse Jon Fuglsang Pedersen (fuglsang@diku.dk)

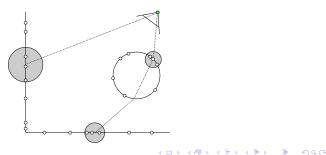
November 25. 2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Outline

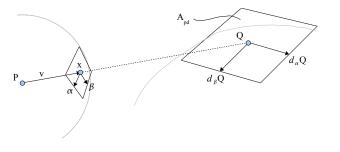
- What is photon mapping?
- What are photon differentials?
- Why consider the view ray differential?
- Introducing two different approaches:
  - Coplanar intersection-weighted photon differentials

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <


- Multi-sampled photon differentials
- Results

## What is photon mapping?

- Global illumination algorithm by Henrik Wann Jensen
- Solves the rendering equation in discrete form:


$$L_r(x,\omega) \approx \sum_{p=1}^k f_r(x,\omega_p,\omega) \frac{\Delta \Phi_p(x,\omega_p)}{\Delta A} \mathcal{K}(\|x_p - x\|)$$

- Algorithm is divided into two stages:
  - Photon tracing
  - Rendering



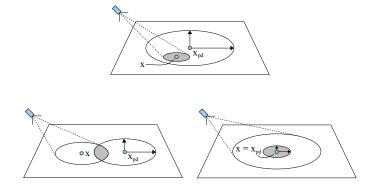
## What are photon differentials? (1/2)

- Extension of photon mapping proposed by Schjøth et al.
- Observation:
  - $\blacktriangleright$  Finite number of emitted photons  $\rightarrow$  each photon can be regarded as the center of a beam with size and shape
- Associates photons with ray differentials (dV, dP)
- Differential position vectors approximate footprint of beam on intersecting surfaces



### What are photon differentials? (2/2)

Can trace ray differentials alongside original ray by evaluating the differentials of the trace operations – example for transfer:

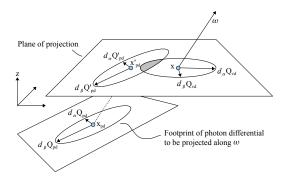

$$Q = P + sV$$
  
$$dQ = dP + (ds)V + sdV$$

Schjøth et al. use the extra information inherent in the footprints to rewrite the radiance estimate:

$$L_r(x,\omega) \approx \sum_{pd=1}^k f_r(x,\omega_{pd},\omega) \frac{\Phi_{pd}}{A_{pd}} K(\|M_{pd}(x-x_{pd})\|)$$

- $M_{pd}$  takes relative sampling point  $x x_{pd}$  into filter space
- Filter space resembles an ellipsoid in world space
- Better at preserving features than regular photon mapping

### Why consider the view ray differential?




 Should be possible to increase accuracy without tracing more view rays or increasing resolution of photon map

## Coplanar intersection-weighted photon differentials (1/2)

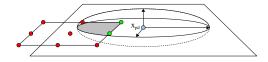
Idea:

- Compute intersection explicitly
- Problem depends on how the footprints are interpreted
- Approximate by intersection of coplanar convex geometry:
  - Project footprints into common plane, rotate into 2D
  - Reconstruct as convex polygons to compute 2D intersection



## Coplanar intersection-weighted photon differentials (2/2)

- Intersection polygon  $C_{vd\cap pd}$  yields:
  - $w_{vd\cap pd}$  coverage of intersection along current view ray
  - ► x<sub>vd∩pd</sub> approximate centroid of intersection (unprojected)
- These can be incorporated in the radiance estimate as follows:

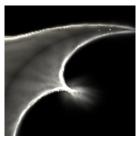

$$L_r(x,\omega) \approx \sum_{pd=1}^k f_r(x,\omega_{pd},\omega) \frac{\Phi_{pd}}{A_{pd}} K(\|M_{pd}(x_{vd\cap pd}-x_{pd})\|) w_{vd\cap pd}$$

- Potential contribution of photon differential is scaled by coverage
- K is evaluated in filter space transformation of  $x_{vd \cap pd}$ , not x
- ► Successfully incorporates the view ray differential, but performance is lacking → prompts alternative approach

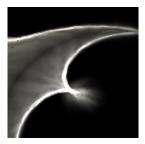
#### Multi-sampled photon differentials

- Idea:
  - Do not compute the intersection explicitly, but sample the photon differential in multiple places, averaging the results
  - Use the view ray differential to define the sample distribution
- Letting X denote the set of N × N sampling points, the radiance estimate can be written:

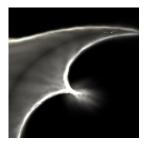
$$L_r(x,\omega) \approx \sum_{pd=1}^k f_r(x,\omega_{pd},\omega) \frac{\Phi_{pd}}{A_{pd}} \left( \frac{1}{N^2} \sum_{i=1}^{N^2} K(\|M_{pd}(X_i - x_{pd})\|) \right)$$



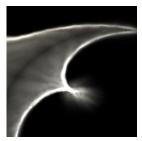

# Results (1/3)




- Simple test case; the clearly defined contour of the caustic should provoke undersampling artefacts
- 120000 photon differentials, of which 20000 are caustic


# Results (2/3)




(a) Regular,  $1 \times 1$  rays/pixel



(c) Coplanar intersection-w.



(b) Regular,  $3 \times 3$  rays/pixel



(d) Multi-sampled, 8 × 8

# Results (3/3)

| Method                                      | Rendering time in seconds |
|---------------------------------------------|---------------------------|
| Regular, $1	imes 1$ view rays/pixel         | 20.637                    |
| Regular, $3 \times 3$ view rays/pixel       | 183.255                   |
| Coplanar intersection-weighted              | 380.045                   |
| Multi-sampled, $8 \times 8$ sampling points | 63.671                    |

- ► Increasing number of view rays/pixel results in linear increase in rendering time → expected
- Coplanar intersection-weighted photon differentials does not perform well enough to be worth it over tracing more view rays per pixel
- Multi-sampled photon differentials performs well; three times faster than tracing more view rays per pixel, and the results are practically free of visible artefacts

### That's it

Questions?

