Multi-sampled Photon Differentials

Incorporating the View Ray Differential in the Radiance Estimate

Lasse Jon Fuglsang Pedersen
(fuglsang@diku.dk)

Supervisor: Jon Sporring
(sporring@diku.dk)

October 2011

Abstract

Using the fundamental theory of photon mapping, photon differentials, and ray
differentials, I explore the possibility of incorporating the ray differential of a
view ray in the radiance estimate for photon mapping with photon differentials.

By treating the view ray differential as a beam that occupies the width and
height of single pixel in the final image, I arrive at two different methods: Copla-
nar intersection-weighted photon differentials, which is based on explicitly com-
puting the coplanar intersection between the footprints of the respective ray
differentials, using the coverage and centroid of the intersection to weigh the
contribution of the photon differential, and multi-sampled photon differentials,
which uses the footprint of the view ray differential to define a set of sampling
points, using this set of points to multi-sample the photon differential.

Based on the hypothesis that it is possible to surpass the accuracy of the regular
filtered radiance estimate by taking into account the footprint of the view ray
differential, I subject each of the two new methods to a common test case,
comparing them to two configurations of the regular filtered radiance estimate;
one using a single view ray per pixel, and one using 3 x 3 view rays per pixel.

My evaluation shows that, while both new methods are improvements over
the regular filtered radiance estimate with one view ray per pixel in terms of
accuracy, coplanar intersection-weighed photon differentials does not perform
well enough in terms of rendering time to be useful in practice without further
optimization.

Multi-sampled photon differentials, however, presents a practical alternative to
obtaining more accurate results without tracing more view rays per pixel. With
8 x 8 sampling points, the results of the method clearly rival those of the regular
filtered radiance estimate with 3 x 3 view rays per pixel, and in addition it is
also three times faster.

Contents
1 Introduction

2 Photon mapping
2.1 Photon tracing o
2.1.1 Emission e
2.1.2 Scattering
2.2 Rendering
2.2.1 Computing the reflected radiance
2.2.2 Hybrid approaches
2.3 Datastructure L Lo
231 Kd-trees
2.3.2 Octrees o
2.4 SUMMATY . . . o . e e e

3 Photon differentials
3.1 Ray differentials oL
3.1.1 Imitialization
3.1.2 Transfer
3.1.3 Reflection o
3.14 Refraction oo
3.2 Emission and scattering L oL
3.2.1 Footprint of photon differential in @
3.3 Computing the reflected radiance

4 Incorporating the view ray differential
4.1 Initialization of view ray differential
4.2 Coplanar intersection-weighted photon differentials
4.2.1 Projection and rotation L.
4.2.2 Computing the intersection
4.2.3 Coverage and centroid L.
4.2.4 Computing the reflected radiance
4.3 Multi-sampled photon differentials
4.3.1 Generating the sampling points
4.3.2 Computing the reflected radiance

5 Implementation and evaluation
5.1 Image comparisons
5.2 Performance discussion

6 Conclusion
References

A Source code

=

O © 00 WO UtWNDNDN

22
23
25
25
27
29
30
30
31
32

33
34
40

42

43

44

1 Introduction

In synthethic computer graphics, there are generally two overarching branches
of rendering algorithms, where each branch caters to a specific type of applica-
tion. One of these branches is concerned specifically with real-time applications,
which require that images are rendered at interactive framerates, while the other
branch is more concerned about photorealism, which requires that the light in
the scene is simulated as accurately as possible.

In terms of photorealistic rendering, most rendering algorithms made for this
purpose revolve around the concept of approximating the solution to an equation
known as the rendering equation. The rendering equation was introduced in 1986
by Kayija [6]. Without going into the formal description this early in the text,
let me just state that the rendering equation defines the visible light in some
point on a surface as a function of the viewpoint, the surface itself, and the
surfaces that are visible from that particular point.

Algorithms that solve the rendering equation are also commonly referred to as
global illumination algorithms. This is because the rendering equation treats
each surface as a potential source of light, which implies that surfaces can be
illuminated both indirectly by other surfaces, and directly by dedicated sources.

The topic of this report has its roots in a global illumination algorithm known as
photon mapping. Photon mapping is a two-stage algorithm, where the first stage
involves tracing photons from the light sources, storing these at each intersecting
surface in an intermediate data structure. The second stage involves tracing
rays from the viewpoint, sampling the intermediate data structure in each point
of intersection to reconstruct the light reflected towards the viewpoint. This
reconstruction is referred to as the radiance estimate.

More recently, Schjgth et al. [8] proposed an extension to photon mapping
known as photon differentials. With photon differentials, each photon is associ-
ated with a ray differential, which keeps track of the size and shape of the light
represented by the photon. Using the extra information provided by photon
differentials, Schjgth et al. [8] define a new radiance estimate, which proves to
be better at preserving the shape and contours of the reconstructed light.

Based on the observation that also view rays can be associated with ray differ-
entials, I explore how to incorporate the view ray differential in the radiance
estimate for photon mapping with photon differentials, with the purpose of im-
proving the accuracy of the radiance estimate. Specifically, using the radiance
estimate defined by Schjgth et al. [8] as the foundation for my work, the purpose
is to arrive at a new radiance estimate that is more accurate than the radiance
estimate defined by Schjgth et al. [8].

Prior to incorporating the view ray differential in the radiance estimate, I de-
scribe the concepts and theory of photon mapping, photon differentials, and ray
differentials, all of which are topics that contain terms, principles and definitions
that are fundamental to my work.

This is a master’s thesis at DIKU — the Department of Computer Science at the
University of Copenhagen. In this regard, I would like to thank to my supervisor
Jon Sporring for the advice that I have received during the project.

2 Photon mapping

Photon mapping is a global illumination algorithm that solves the rendering
equation. It revolves around the concept of using an intermediate data structure,
the so-called photon map, to estimate the irradiance for any given point on
any given surface, and consequently also the reflected radiance for any given
viewpoint. It was introduced by Henrik Wann Jensen in 1996 [4].

The basic photon mapping algorithm consists of two stages: The photon tracing
stage and the rendering stage. The photon tracing stage populates the photon
map by tracing rays from the light sources, while the rendering stage generates
the final image by tracing rays from the viewpoint, sampling the photon map.

Sections 2.1 and 2.2 describe each of the two stages in more detail, while section
2.3 discusses the underlying data structure for the photon map.

2.1 Photon tracing

In the photon tracing stage, a finite number of photons are emitted from the light
sources in the scene. Each photon can be thought of as a particle that represents
some radiant power ®, travelling in a specific direction. The scattering and
distribution of light through the scene is then simulated by tracing the path of
each photon, and along each path the relevant photon-surface intersections are
stored in the photon map.

2.1.1 Emission

As shown in Figure 1, the initial position and direction of each photon depends
on the type of light source that it originates from. If the light is a point light,
then the starting point is already known, and the direction is randomly chosen
within the unit sphere. For complex lights, i.e. lights with a surface, the starting
point is a randomly chosen point on the surface, and the direction is randomly
chosen within the unit hemisphere in the direction of the corresponding surface
normal.

(a) Point light (b) Complex light

Figure 1: Illustration of photons being emitted from two different types of light sources. When
emitted by a point light, the emitted photon all assume the same starting point. When emitted by
a complex light, the starting point is a random point on the emitting surface. In this example the
emission occurs in 2D, meaning that the surface in (b) is the boundary of the blue area.

The radiant power of each photon is initialized to a fraction of the corresponding
light source’s radiant power ®. To avoid adding or removing energy from the
system, the sum of the radiant power of the photons emitted by a given light
source must always equal the radiant power of the light source itself. A simple
solution is to divide the radiant power of the light source evenly among its

emitted photons, i.e.:
)

¢, = N (1)

where N is the number of emitted photons for that particular light source.

Note that the number of emitted photons is not a direct parameter of the indi-
vidual light sources. Rather, this value is inferred from the specified number of
photons for the entire scene Nycene, as well as each light source’s radiant power
®, in relation to the total radiant power of all light sources in the scene @gcene-
Thus, the number of emitted photons for a single light source is defined as:

P

q)scene

N =

Nscene (2)

Jensen remarks [5, p.61] that all photons having approximately equal radiant
power is important for the quality of the radiance estimate. The radiance esti-
mate is described in section 2.2.1 on page 6.

For photons emitted using the model described above, this is easily verified
by substituting the right hand side of Equation 2 into Equation 1, and then
reducing:

)

P _® N
q’scene scene

éscene
= 3)
Nscene

which states that the radiant power of any emitted photon is just a function of
the total radiant power of all lights in the scene, as well as the total number of
emitted photons.

2.1.2 Scattering

After a photon has been emitted, then it is traced through the scene to sim-
ulate the scattering of light. This is achieved using conventional ray tracing
techniques. Each photon is essentially treated as a ray that is tested for inter-
sections with surfaces in the scene, where, for each photon-surface intersection,
the material properties of the surface are used to decide the next course of
action.

Based on the material properties of an intersecting surface, a photon can be
reflected, refracted, or absorbed in some capacity. In general, when a photon
is reflected or refracted, then its radiant power ®, and incident direction wy, is
stored in the photon map, essentially adding to the incident radiant power in
the point of intersection. As shown in Figure 2 on page 4, a photon can be

stored multiple times along a path. A photon trace continues until the photon
is absorbed, until some maximum number of intersections is reached, or until
no further intersections can be found.

Figure 2: An example of one of the possible paths that a photon can take through a scene. The
blue dot denotes the emitting light source, a point light in this case, and the white dots denote
where the photon is stored in the photon map for this particular path. In this case the photon is
reflected twice, first by a specular surface and then by a diffuse surface, and then refracted. The
trace terminates as the photon exits the scene in a direction where no more intersections can be
found.

Obviously, most surfaces are not perfect reflectors nor fully transparent. They
absorb some of the light that hits them, and they typically also reflect light in
multiple directions, diffuse as well as specular. For these reasons, an explicit
implementation of scattering normally requires that the radiant power of each
photon is adjusted when reflected or refracted, and that more photons are cre-
ated at each photon-surface intersection, in order to evaluate all possible paths.

However, evaluating all possible paths for each emitted photon is also expensive
and impractical. For this reason, photon tracing does not implement scattering
explicitly, but instead uses a probabilistic selection scheme known as russian
roulette.

Using the russian roulette scheme, only a single path is traced for each photon,
and the radiant power of each photon is retained for the entire length of its path,
regardless of the number of reflections and refractions. Instead, the number of
reflections and refractions that each photon is subjected to is probabilistically
chosen based on the surface properties along the path.

More specifically, the russian roulette scheme lines up the possible choices as
numeric intervals proportional to the material properties of the intersecting
surface, and then picks a random number that points to one of them. For
example, if a surface is 75% specular, then the russian roulette scheme will cause
75% of the photons hitting that surface to be reflected in the specular direction
with unchanged radiant power, while the remaining 25% will be completely
absorbed and discarded.

Given enough photons hitting the same surface, it should be clear that reflecting

100% of the radiant power of 75% of the incoming photons is equivalent to
reflecting 75% of the radiant power of 100% of the incoming photons. Russian
roulette therefore produces a result that is similar to that of a non-probabilistic
approach, although at the cost of some added variance in the photon map.

Listing 1 shows how photon scattering can be implemented statistically using
the russian roulette scheme, eliminating the need to trace all possible paths for
each photon.

// photon scattering using russian roulette
void trace (photon)

surf = find_next_surface (photon)

rand = rand_unit ()

// test if within interval for specular reflection

if ((rand —= surf.k_s) < 0)

store_photon (photon , surf)

return trace(reflect_s (photon, surf))
}
// test if within interval for diffuse reflection
if ((rand —= surf.k_d) < 0)
{

store_photon (photon , surf)

return trace(reflect_d (photon , surf))
}
// test if within interval for refraction
if ((rand —= surf.k_t) < 0)
{

store_photon (photon , surf)

return trace(refract (photon, surf))

// absorb (end trace)

Listing 1: Pseudo-code for photon scattering using russian roulette.

2.2 Rendering

During the rendering stage, a finite number of rays are cast from the viewpoint
and traced into the scene. These rays pass through points on the view plane
that correspond to pixels in the final image, hence they are referred to as view
rays.

Each view ray is traced recursively, but the recursion only occurs in the case
of refraction. This is to support transparent surfaces, and this particular part
of the algorithm can be likened to a simplified version of classic recursive ray
tracing [11].

Because the photon map contains an approximation of the incident light for
every point on every surface in the scene, direct as well as indirect, it is not
necessary to pursue reflection rays, or trace rays back to direct light sources, in
order to compute the reflected radiance for a given view ray.

For each ray-surface intersection, the reflected radiance in the direction of the
view ray is computed directly based on the k-nearest photons in the photon map.
Jensen refers to this computation as the radiance estimate. Obviously, the closer
the k-nearest photons are to the point of intersection, the more accurate the
estimate of the reflected radiance will be.

Figure 3 illustrates the paths of example view rays as they are traced into
an example scene, as well as how the distance may vary to the photons that
contribute to the radiance estimate in each ray-surface intersection, assuming
k=3.

<

Figure 3: View rays are traced from the viewpoint and into the scene. For each ray-surface inter-
section, the k-nearest photons are retrieved from the photon map and used as input to the radiance
estimate, which is detailed in section 2.2.1. In this example k = 3. Notice how the support region
(marked with grey circles) expands around the point of intersection to encompass the k-nearest
photons. Obviously, the smaller the support region is, the more accurate the radiance estimate will
be. In general, emitting more photons into the scene during the photon tracing stage will increase
the chance of a smaller support region during the rendering stage.

The radiance estimate is described in more detail in the the following section,
2.2.1, and section 2.2.2 discusses some of the optimizations that are relevant in
terms of practical application of the basic photon mapping algorithm.

2.2.1 Computing the reflected radiance

Computing the radiance for a given view ray is synonymous with solving the

rendering equation:
Lo(z,w) = Le(z,w) + Ly (x,w) (4)

where z is the point of intersection, w is the outgoing direction, L. is the emit-
ted radiance, and L, is the reflected radiance. Typically, w is defined as the
normalized and inverted direction of the view ray’s actual direction v, i.e.:

v

Ww=— (5)

[[o]
Assuming that the emitted radiance can be read directly from the intersecting

surface in z, the main point of interest is to compute the reflected radiance.
The reflected radiance can be described by the following integral:

L.(z,w) :/Q fr(z, ' w)Li(z,w) (ng - W')dw' (6)

where 2, is the hemisphere in the direction of the surface normal n, in the
point of intersection x. The integration variable w’ is a direction on the hemi-
sphere, and L; is the incident radiance from w’. Finally, f, is the bi-directional
reflectance distribution function (BRDF'), which describes how much of the in-
cident light from w’ is reflected in the outgoing direction w.

As described in section 2.1.2, each photon stored in the photon map represents
some incident radiant power @, from a specific direction w,. According to
Jensen [5, p.14], incident radiance L; can be expressed in terms of incident
radiant power ®; as follows:

d*®;(z,w")

Li(m,w/) = m (7)

where dw’ is the solid angle and dA; is some infinitesimal area on the surface
around x. Plugging this back into Equation 6 yields:

_ d*®;(z, ') Ny
L.(z,w) = /frxww(mw’)dw’dA(- w')dw

B o dz@(xw)
= [pew 0T 0

Finally, the continuous integral is approximated by a sum over the k-nearest
photons in the photon map. Jensen writes:

k
Ad,(z,w
= Yo) 22T n) 0

where w,, is the incident direction stored with each photon, and A®,(z,w,)
is the stored radiant power, assuming that the photon was actually stored in
x. This is usually not the case, and the farther a photon lies from x, the less
accurate its contribution to the radiance estimate will be.

In Equation 9, AA denotes the projected area of a sphere expanded around x
to encompass the k-nearest photons. This is also illustrated in Figure 3 on page
6. Assuming a flat surface around =, AA is defined as the area of a circle with
the same radius r as the encompassing sphere, i.e.:

AA = 7r? (10)

One of the issues with the raw radiance estimate — Equation 9 — is that the k-
nearest photons typically have varying distance to the actual point of interest x.
As the accuracy of a particular photon’s contribution to the radiance estimate
increases as its distance to x decreases, it makes sense that photons close to x
should contribute more than photons far from .

Thus, Jensen suggests weighing the contribution of each photon by some func-
tion K of its distance to x, i.e.:

Zfr 0y 0) B ¢,))

where z,, is the position of the photon in the photon map. Notice how K is
essentially an isotropic filter kernel, since it relies on the euclidean distance
between z, and x.

2.2.2 Hybrid approaches

Jensen [5, p.95] suggests that, in practice, mixing photon mapping with more
elements of classic recursive ray tracing [11] can be beneficial, especially in
terms of improving the quality of specular reflections without having to greatly
increase the number of photons. The primary reason for this is that specular
reflections, unlike diffuse reflections, are highly viewpoint-dependent, while the
photon map is viewpoint-agnostic. Thus, by ignoring specular reflections in
the photon tracing stage and instead tracing these backwards in the rendering
stage, it is possible to get considerably better image quality without increasing
the number of emitted photons.

Similarly, Jensen also suggests using a separate photon map to render caustics,
generated by emitting photons specifically towards highly curved specular sur-
faces, since these are most likely to cause the formation of caustics. Caustics
usually have sharp features, such as clearly defined edges, which can be diffi-
cult to reconstruct due to the averaging nature of the radiance estimate, which,
using the k-nearest photons, blurs details in favour of less variance.

Neither of these optimizations are requirements of the basic photon mapping
algorithm, and one can also think of them as sampling problems, i.e. problems
that become smaller as the resolution of the photon map is increased. In this
chapter I have chosen to focus on the photon mapping algorithm in its most
basic form, and I refer the interested reader to Jensen’s book [5] for further
details on the various optimizations.

Section 3 examines an extension to photon mapping, namely photon differ-
entials, that improves the ability to render caustics without using a separate
photon map or increasing the number of photons.

2.3 Data structure

The photon map is a data structure that allows insertion of photons as well as
searching for the k-nearest photons in any given location in a three-dimensional
space. In principle, any type of data structure can be used, even a simple list,
but for all but the most simple cases we will want to use an acceleration structure
that allows searching for the k-nearest photons in less than linear time. This is
because the rendering stage will be querying the photon map for the k-nearest
photons quite often.

2.3.1 Kd-trees

Jensen [5] suggests using kd-trees to implement the photon map. Since kd-trees
happen to subdivide space by axis-aligned splitting planes that intersect points

in space, see Figure 4, this choice makes quite a lot of sense as long as photons
have no size or shape associated with them.

1 1
4 y-split

2
x-split

3
x-split

y-split y-split

Ly

L. 5

Figure 4: An example of a two-dimensional kd-tree with 5 nodes. Kd-trees subdivide space by
axis-aligned splitting planes chosen in rotation. The subdivision of space is shown on the left, and
the structure of the corresponding tree is shown on the right. In this case there are only two axis,
hence the nodes partition the space along y, then x, then y, and so forth. Because each node is a
point, the kd-tree is well suited to storing photons with no size or shape associated with them.

By implementing the photon map using a kd-tree, the photons themselves can
act as the nodes in the tree, reducing both complexity and memory consumption.
This data structure also allows searching for the k-nearest photons in logarithmic
time; O(k+logn), where n is the number of photons and k is the desired number
of neighbours.

2.3.2 Octrees

Another possibility is to use octrees, a three-dimensional variant of quadtrees [1].
Octrees are an interesting alternative as they employ fixed spatial subdivision,
see Figure 5 on page 10, rather than the splitting-plane approach used by kd-
trees.

The fixed subdivision of space makes octrees quite easy to grasp and visualize,
and therefore also relatively easy to implement. For example, searching in an
octree can be accomplished by tracing rays into the geometry of the tree, testing
for intersections with the axis-aligned bounding boxes that define the nodes of
the tree. Octrees also inherently support entities with actual volume and/or
shape, which could potentially be useful with regards to photon differentials.

Perhaps the most obvious disadvantage of using octrees is that the tree cannot
be rebalanced, and as such the tree will only be balanced if the data stored in it
already has a uniform spatial distribution. This follows as a result of the fixed
spatial subdivision.

’ @
L’X

Figure 5: An example of a quadtree storing two points (upper left) and some complex geometry
(lower right). In a quadtree, the nodes in the tree are squares, with the root node being the
outermost square. Octrees are very similar, except that the nodes are cubes, and that each node
has eight children rather than four. Insertion occurs from the root of the tree: If the data can fit
completely into one of the child nodes of the current node, then the insertion continues in the child

node, and otherwise the data is stored in the current node. Empty space is not partitioned since
child nodes are created on demand.

2.4 Summary

To summarize, this is the behaviour of the standard photon mapping algorithm:

1. Ngcene photons are emitted from the light sources in the scene. All photons
are given the same radiant power, ®, = ®gcene/Nscene, With the distinction
being that more photons are emitted from bright light sources than dim
light sources.

2. Each of the emitted photons is traced through the scene to simulate the
scattering of light. Using russian roulette, only a single path is traced for
each photon, and the radiant power of each photon stays constant for the
entire length of its path. A photon is stored in the photon map every time
it is reflected or refracted, i.e. in each point of intersection along its path
until absorbed.

3. View rays are traced from the viewpoint and into the scene. For each ray-
surface intersection, the k-nearest photons are gathered from the photon
map and used as input to the radiance estimate. The result of the radiance
estimate adds to the intensity of the corresponding pixel in the final image.
Refracted rays are traced recursively to support transparent surfaces.

The next section describes a different variant of photon mapping, introduced by
Schjgth et al. [8], in which photons are replaced by photon differentials. Unlike
photons, photon differentials have size and shape associated with them, and this
allows for a redefinition of the radiance estimate which preserves the shape of
the emitted light.

10

3 Photon differentials

With photon mapping, recall that the propagation and distribution of light is
approximated by emitting and tracing a finite number of photons from each light
source. Because the resolution of light is infinite, each of the emitted photons
can also be interpreted as the center of a beam whose size and shape changes
as it propagates through the scene.

By keeping track of the beam surrounding a given photon, it is possible to
approximate the shape of the light that reaches a given surface without having
to increase the number of photons. Essentially, when a photon hits a surface,
the projection of the surrounding beam onto the tangential surface in the point
of intersection yields a footprint, and this footprint is an approximation of the
shape of the light that reaches the intersecting surface.

Schjgth et al. [8] propose a variant of the standard photon mapping algorithm,
in which each photon is associated with a ray differential to describe and keep
track of the surrounding beam as it propagates through the scene. They refer to
this combination of photons and ray differentials simply as photon differentials.

More specifically, a photon differential represents a beam of light whose size
and shape changes as it propagates through the scene. It is defined by some
radiant power ®,4, a position P and a direction V' that describe the position
and direction of the center of the beam, as well as a ray differential (dP,dV)
that describes the positional and directional offsets of two imaginary adjacent
rays that approximate the size and shape of the beam.

Although photon differentials completely replace photons in the variant of pho-
ton mapping proposed by Schjeth et al. [8], most of the basic aspects of the
algorithm are indifferent from standard photon mapping, with the most essen-
tial differences being that the differentials dP and dV have to be initialized and
updated during emission and scattering, as well as the radiance estimate, which
is redefined to take into account the size and shape of the footprint.

First, section 3.1 describes the fundamental theory of ray differentials, as well
as the basic operations for tracing them analytically. Then, based on the theory
of ray differentials, section 3.2 describes the necessary changes to emission and
scattering, while the redefined radiance estimate is described in section 3.3.

For a detailed evaluation of how photon mapping with photon differentials per-
forms in comparison to standard photon mapping, I refer the interested reader
to the original paper on photon differentials by Schjgth et al. [8].

3.1 Ray differentials

A ray can be defined by its position P and a direction V. If a ray with position
P is known to pass through a point x, then its direction V' can also be written
as a function of the vector from P to z, i.e.:

- (%
o]l

v (12)

11

where
v=x—P (13)

A ray differential is a first order approximation of the change in a ray’s position
and direction with respect to one or more of the initial parameters of the ray.
In other words, a ray differential consists of two differentials, dP and dV', which
can be used to infer the position and direction of an imaginary adjacent ray.

For example, given a ray whose position P is constant and whose direction V'
therefore only depends on z, the differential dV' approximates the change in V'
for some change in z. Figure 6 illustrates the relationship between the change
in z, the differential dV, and the direction V' + dV of the imaginary adjacent
ray.

P \% \% X
................. O
av

Figure 6: Illustrates the relationship between the differential dV of a ray’s direction V for some
change in z, dx, as well as the inferred direction V' + dV of the resulting imaginary adjacent ray.

Ray differentials were first introduced by Igehy [3], who originally used them to
perform anisotropic texture filtering. More recently, Sporring et al. [9] described
them in a more general form, using the notation and algebra of Magnus and
Neudecker [7] to support concatenation of operations by matrix multiplication,
and also extended them to the temporal domain.

A very nice property of ray differentials is that they can be propagated through
the scene alongside the original ray, simply by evaluating the differentials of
the same operations used to propagate the original ray. Figure 7 illustrates the
relationship between a ray and the imaginary adjacent ray represented by a ray
differential as both propagate through the scene.

Q

Q+dQ

V+dV

P reflect reflect reflect

Figure 7: The relationship between a ray and the imaginary adjacent ray represented by a ray
differential as both propagate through the scene. In this example, the original ray is transferred to
an intersecting surface and then reflected. P is the initial position of the ray, while Q is its position
following the transfer. Similarly, V' is the initial direction of the ray, while Wiqect is its direction
following the reflection. The position and direction of the imaginary adjacent ray is inferred at each
step by taking the sum of the ray’s position and direction and the respective components of the ray
differential. The operations for transfer and reflection are derived in sections 3.1.2 and 3.1.3.

Igehy [3] describes the necessary operations for transfer, reflection, and refrac-
tion, but skips over some detail in the derivations of these. On the other hand,
Sporring et al. [9] go into great detail in the derivations, but the general form
of their equations requires a bit more of the reader.

12

The remainder of this section describes the initialization of a ray differential and
derives the operations for transfer, reflection, and refraction. I will be using the
notation of Sporring et al. [9], while following the assumptions of Igehy [3] to
simplify some of the terms.

3.1.1 Initialization

Given a ray with position P and direction V', the ray differential (dP,dV’) with
respect to the parameters of P or V can be found by applying the differential
operator directly to P and V.

Starting with dV/, note that ||v|| = VoTv = (vTv)2, and that V therefore also
can be written:)
V =v(Tv)"2 (14)

Applying the differential operator to the above definition of V' yields:
v = d (U(UTUT%)

= (dv)(vTv)_% + vd <(vTv)_%)

= (dv)wTv)"F +v (—;(UTU)—Sd(U%O

— ()@ V) E 4o <—;(v%)—% (@) + dev)>

= (dv)wTv) % +v (—;(UTU)—iszdv>

= (dv)(wTv)"E — v) 20 dv (15)

To continue the derivation, observe how dv can move freely in the left term
because (vTv) is a scalar. However, also note that moving out dv requires the
introduction of the identity matrix I, since one cannot subtract a matrix from
a scalar. The final steps follow:

v = ((UTU)—%I—U(UTU)—%UT) dv
- EZ;Z; ((UTU)—%J—U(UT)—%UT) dv
_ (UTIU)Z’ (0T o) — v do
_ <”T(”37{v;;“T v (16)

Note that expressing the differential dV with respect to dv results in the Jaco-
bian of V', which is a matrix containing the partial derivatives of V' with respect
to each component of v:

awv (W)l —wo”

dv (vTv) 3 (7

13

where

{dVL} oV; (18)

% - a’l}j

Finally, from Equation 13 it is obvious that dv = (dz — dP). Thus, under the
assumption that the ray’s position P has no dependencies, it follows that the
differential dP of the ray’s position is zero, and that the differential dV of the
ray’s direction only depends on the change in x, dz:

dP = 0 (19)
v = de (20)

Once initialized, the ray differential (dP, dV') can be traced alongside the original
ray using the operations for transfer, reflection and refraction.

3.1.2 Transfer

The transfer operation shifts a ray’s position to its point of intersection with a
surface in the scene. Given a ray with position P and an intersection point Q,
the ray’s transferred position @ can be written as:

Q=P+sV (21)
where s is the distance to the surface along the ray’s direction V.

Applying the differential operator to Equation 21 yields the formula for trans-
ferring the corresponding ray differential. Given a ray differential (dP,dV), the
differential d@ of the ray’s transferred position can be written as:

dQ = dP + (ds)V + sdV (22)

To actually solve Equation 22 it is necessary to derive ds. Given the surface
normal N in the point of intersection g, s can be expressed as the ratio between

the two dot products:

5 — (QO‘;T?;TN (23)

Applying the differential operator to the above definition of s yields:
- P)'N
ds — d ((Qo))

VTN

_ (VIN)A((Qo = P)TN) — (d(VTN)) (Qo — P)"N
- (VTN)?
_ ([dQo—dP)™N _ (Qo—P)TdN _ sd(VTN)
= VTN VTN VTN
_ (dQ—dP)'N (Qu—P)TdN _sNTdV _sVTdN
a VTN VTN VIN ~ VIN

NT NT (Qo — P)T —sVT sNT
= Qo — P + TN AN — pedV - (24)

14

Sporring et al. [9] proceeds with this general form of ds while Igehy [3] makes the
assumption that the intersection point Qg is fixed and that surface normal N is
constant over the intersecting surface. By zeroing out these terms in Equation
24, it is possible to verify that the result is equal to that of Igehy [3]:
T T
gs = - N _qp_ N
VTN VTN
NTdP + sNTdV
- VTN
(dPT + sdVT)N

- VIN (25)

av

Following Igehy’s assumption of a fixed intersection point and constant surface
normal, i.e. plugging Equation 25 into Equation 22, a readily solvable formula
for the differential d@ of the ray’s transferred position is found to be:

NT sNT
dQ = dP_(I/Y”]VdP+‘/T]VdV>V+SdV
NTqp sNTJv
= dP— VTNV_ VTN V + sdV

VNT sVNT

= AP~ o dP = oV 4 sdV
VNT VNT +1

Refer to Sporring et al. [9] for an elaborate definition of d@ that does not assume
constant intersection point nor constant surface normal. Figure 8 illustrates the
transfer operation geometrically using the simplified formulation of ds.

Q Q+dQ = Q+sdV+(ds)V
ds)V

p Vidy \ds| = s((dV")N) / (V'N)

Figure 8: An illustration of the involved terms in the transfer of a ray differential, assuming that
dP = 0, and assuming a flat surface using the simplified formulation of ds shown in Equation
25. The proportions are approximate but roughly correct. Notice how this shows how d@Q only
approximates the offset to the intersection point between the imaginary adjacent ray (grey dotted
line inferred by V + dV') and the surface.

3.1.3 Reflection

The reflection operation reflects a ray’s direction based on its incident angle to
an intersecting surface. It assumes that the ray has already been transferred to

15

the surface in question. Given a ray with direction V' and the surface normal N
at the intersection point, the ray’s reflected direction Wieflect can be written as:

Wrcﬁcct =V - 2(VTN)N (27)

Applying the differential operator to Equation 27 yields the basic formula for
reflecting the corresponding ray differential. Given a ray differential (dP,dV),
the differential dWyegiect Of the ray’s reflected direction can be written as:

AWrelect = dV —2d (VI N)N)
= dV -2 ((d(V'N))N + (V'N)dN)
= dV —2(VT'N)AN —2((dV")N + VTdN) N
= dV —-2(VIN)dN —2(NTaV)N — 2(VTdN)N
dV —2(VI'N)dN — (2NNT)aV — (2NVT)dN
= (I-2NN")av —2(VINI - NVT)dN (28)

Evaluating dWiefect requires the differential dIV of the surface normal N. This
derivation is outside the scope of this report, but one may refer to [3] for a
discussion of the concept of using a so-called shape operator, or Sporring et al.
[9] who derive dN in full for phong shaded surfaces with vertex-interpolated
surface normals.

3.1.4 Refraction

The refraction operation refracts a ray’s direction based on its incident angle
to an intersecting surface using Snell’s law of refraction [3][9]. Just like the
reflection operation, this operation also assumes that the ray has already been
transferred to the surface in question. Given a ray with direction V' and the
intersecting surface’s surface normal N, the ray’s refracted direction Wieract
can be written as:

Wrefract = 77V - NN (29)

where 7 is the ratio of refraction, and where:
= VTN +z (30)
e = 1-n*(1—-(VT'N)?) (31)

Applying the differential operator to Equation 29 yields the formula for refract-
ing the corresponding ray differential. Given a ray differential (dP,dV’), the
differential dWiegract Of the ray’s refracted direction can be written as:

AWietract = dnV +ndV —dulN — pdN
Vdn+ndV — Ndu — pdN (32)

To actually evaluate the above definition of dWiegract it is necessary to derive dn,
du, and dN. For flat surfaces separating two homogeneous media, the surface
normal N and the refraction ratio n are constants across the intersecting surface,

16

which implies that the corresponding differentials are zero, i.e. dN = 0 and
dn = 0. This assumption leaves only the derivation of du, which relies on de.

Applying the differential operator to Equation 31 yields dn:
de = 0—(d(n*) (1= (V'N)?)—n?d(1— (V'N)?)
= —2n(dn) (1= (V'N)?) =0 (0—2VTN((dVT)N + VTdN))
=20 (1= (VIN)?) dn+ 20V N(NTdV + VTdN) (33)

Similarly, given de, du is derived from Equation 30 as follows:
dp = (dn)VIN 49 ((dVT)N + VTdN) + dy/=
1
= VTNdy+n(NTdV + VTdN) + 55—%dg

e
2

dn +

= VTNdy+n(NTav + VTdN) +
2 (1- (VIN)?)
NG
n(NTdV +VTaN) +
1—¢
= (VTN -) dn +
(e

TN TN
7 <1 + ”V\@) NTQV +q (1 + UY@) VIAN (34)

= VINdy-

22VTN(NTAV + VTdN)
2

And finally, substituting the above definition of du into Equation 32 yields the
full definition of dWyefract:

AWietract = Vd’f] - N (VTN - 1= 8) d?] +
e
nV'N T
nanN(lJr N dV —
Ve
Y
pdN — g (14 VN yrgn
Ve

- (V—N(VTN— ln_/;>)d’l7+

T
(77] — N (1 + "V\@N> NT> av —

(ul —nN (1 + 77‘/\;;]) VT> dN (35)

where the first and third terms evaluate to zero for flat surfaces separating two
homogeneous media. Akin to the derivation of the reflection operation in section
3.1.3, refer to Igehy [3] and Sporring et al. [9] for details on the derivation of
dN for non-flat surfaces.

17

3.2 Emission and scattering

Based on the properties of the emitting light source, each photon differential is
assigned a position P, a direction V, and some radiant power ®,4. The initial-
ization of these properties follow the same principles as when regular photons are
emitted as described in section 2.1.1, with the addition being the initialization
of (dP,dV’). Using the definition of V from Equation 12 in section 3.1.1:

v o v
[[v]l

B z— P

o7

and assuming that P is constant, dP and dV are given by:

dP = 0

T NT — T

v o (viv)l Sm) dx
(vTv)2

For a photon differential, dx is a 3 X2 matrix whose columns describe the changes
in z that govern the initial change in V for each of two imaginary adjacent rays.
Using « to denote the vector parameter of the first imaginary ray, and 8 to
denote the vector parameter of the second imaginary ray, dx can be defined as:

de=[a B | (36)

Schjoth et al. [8] suggest that, ideally, for each photon differential emitted by
a given light source, @ and [should be chosen such that the footprint of the
resulting beam represents a fraction of the area of the unit sphere proportional
to the number of photon differentials emitted by that particular light source.

Based on the definition of the area of the footprint given in section 3.2.1, and
assuming that v = V', which implies that z is a point on the unit sphere around
P, this is possible by choosing o and 3 such that these describe two adjacent
sides of a square in the tangent plane, whose center is z, and whose area is a
fraction of the total surface area 47 of the unit sphere.

Basically, pick two orthogonal unit vectors in the tangent plane in x, and then
scale them such that they span a quarter of the desired area. More formally,
first pick a random unit vector u where |u - V| # 1, i.e. where u is not parallel
to V. Then, using u to obtain the vectors in the tangent plane, o and [are

given by:
1 /4rm

1 [4rw
B = 2\/;(V><(V><u)) (38)

where N is the number of photon differentials emitted by the light source.

After emission, each photon differential is treated as a ray that is traced through
the scene until absorbed. This procedure is mostly similar to that of a normal

18

photon as described in section 2.1.2, also using russian roulette, but with the
addition that (dP,dV) is updated in each point of intersection @). This is accom-
plished using the operations for transfer, reflection and refraction as described
in sections 3.1.2 through 3.1.4.

Updating (dP,dV) is done in two steps. First the transfer operation is used to
transfer dP to the intersecting surface, yielding d@). Then, based on the outcome
of the russian roulette selection scheme, dV is either reflected or refracted by
the intersecting surface, yielding either dWyefiect Or dWietract -

When (d@,dW) has been found, then the photon differential is stored in the
photon map. More specifically, the photon map stores the photon differential
in the point of intersection (), along with its radiant power ®,4, the incident di-
rection V', and its footprint on the tangential surface in the point of intersection
Q. The definition of the footprint is given in section 3.2.1.

Finally, (dQ,dW) replaces (dP,dV), i.e.:

dP <+ dQ
dv <« dW

and the trace continues.

3.2.1 Footprint of photon differential in @

The footprint of a photon differential on the tangential surface in an intersection
point @ is defined by the positional offsets of the two imaginary adjacent rays
described by (d@,dW). The positional offsets are given by the differential of @
for each of the initial emission parameters o and 5. Schjgth et al. [8] refer to
these offsets as the differential position vectors. Based on the definition of dz in
Equation 36, they can be obtained directly from the columns of d@ as follows:

[daQ dgQ |=dQ (39)

where d,@Q denotes the differential position vector of the first imaginary ray,
and dg(denotes the differential position vector of the second. See Figure 9.

Figure 9: Illustration of the footprint of a photon differential in @ after emission from a light source
in P followed by the initial trace to the first intersecting surface. Note the relationship between the
plane spanned by the differential position vectors do@Q and dgQ@ and the projected area Apg.

19

Schjoth et al. [8] define the area Ap; of the footprint as the area of the par-
allelogram spanned by the differential position vectors d,@ and dg(). Under
the assumption that @ is the center of the photon differential on the tangential
surface, arguably the parallelogram should be spanned by 2d,Q and 2dgQ, and
offset by [—do@ —dsQ)T, in order to respect Q) as the center.

Thus, noting that the area of a parallelogram is the length of the cross product
of two of its adjacent sides, 4,4 is given by:

Apa = || (2da@Q) x (2d5Q) || (40)

As mentioned in section 3.2, the footprint (dnQ, dgQ) is stored in the photon
map alongside the other properties of a photon differential. This is in order
to make (d,Q,dsQ), and thereby also A4, available to the redefined radiance
estimate, which is described in the following section.

3.3 Computing the reflected radiance

Schjgth et al. [8] redefine the radiance estimate such that it takes into account
the size and shape of the footprint (d,Q,dpQ®) of each of the involved photon
differentials. In brief, the size of the footprint is used in the approximation of
the irradiance in the sampling point x, while the shape of the footprint is used
to define an anisotropic filter kernel centered around the point x,q where the
photon differential was stored in the photon map.

Recall from Equation 8 in section 2.2.1 that the reflected radiance is given by:

d*®;(z,w')
- 2w
L. (z,w) = /Ql fr(z,w' w) A,

As described in section 2.2.1, in the radiance estimate based on regular photons
it was necessary to approximate the projected area dA; by the projected area of
the sphere encompassing the k-nearest photons, simply because regular photons
do not have any size or shape.

Given a photon differential on the other hand, the area Ap,q of its footprint
(da@, dgQ) is a direct approximation of the projected area affected by its radiant
power ®,4. These quantities are related to the irradiance in the point x,4 where
the photon differential was stored in the photon map, which prompts a different
solution to the above equation.

Jensen [5] defines the irradiance in some point z as the incident radiant power

®; per unit projected area dA;:

B = =4 (41)

Schjoth et al. [8] remark that by adding a directional dependency w’ to the
incident radiant power ®;, the result is the irradiance in x due to the incident
radiant power from that particular direction:

dd;(z,w")

E(x,w') = By (42)

20

and this is exactly what is provided by a photon differential for x = x4, not-
ing that ®,q ~ d®(zpq,w’) and A,y ~ dA;. Substitution of this definition in
Equation 8 results in the following definition of the reflected radiance L,.:

L, (z,w) = /er(x,w’,w)dE(x,w’) (43)

Under the assumption that x = x,4, the continuous integral in Equation 43 can
be approximated by the following sum over the k-nearest photons:

k
L (z,w) = Zfr(z,wpd,w)AE(:rpd,wpd)

pd=1

k
o

= Zfr(m,wpd,w)—pd (44)

Apa

pd=1

Obviously, the above approximation becomes less and less accurate as x diverges
from xpq. Similar to the filtered radiance estimate in the standard photon
mapping algorithm, see Equation 11 in section 2.2.1, Schjgth et al. [8] choose
to weigh the contribution of each photon differential by its distance to the
sampling point z. However, instead of simply using the distance ||z,q — ||, the
contribution of a photon differential is based on a function of the vector from
Zpq to x that takes into account the shape of the footprint.

The footprint (do@, dg@) of the photon differential can be interpreted as two
axis of a skew ellipsoid that defines filter space with respect to world space.
Thus, the matrix M, that transforms from world space to filter space is given

by:

do@Q x dgQ -1

Mpa = @ do@ 1 O 0sQ]

(45)

By applying M, to the vector from the photon differential to the sampling
point, & — xpq4, the result is a vector in anisotropic filter space, Mpq(z — Tpa),
the length of which can be used as input to an isotropic filter kernel. Putting it
all together, the filtered radiance estimate for photon differentials is defined as:

k
Lie,w) ~ 3 o) PR Myl —mp)) (46)

pd=1 pd

where K defines the filter kernel. Because the input to K is given with respect
to the anisotropic filter space defined by the footprint of the photon differential,
K essentially behaves like an anisotropic filter kernel defined by the footprint
of the photon differential.

Finally, Schjgth et al. [8] also specifically mention rejecting those of the k-
nearest photon differentials whose footprints do not overlap the sampling point
x, excluding these from the radiance estimate.

Note that this is a departure from the filtered radiance estimate in the standard
photon mapping algorithm, see Equation 11 in section 2.2.1, where all of the
k-nearest photons contribute to the reflected radiance in some capacity, though
far-away photons may contribute very little.

21

4 Incorporating the view ray differential

With both standard photon mapping and photon mapping with photon differ-
entials, see sections 2 and 3, the rendering stage traditionally revolves around
tracing infinitesimal view rays from the viewpoint. For each intersection between
a view ray and a surface, the radiance estimate is based on just the intersection
point x, also sometimes referred to as the sampling point, and the view ray’s
incident direction w.

However, like photons in the transition to photon differentials, a view ray can
also be interpreted as part of a ray bundle or beam. Specifically, because a finite
number of view rays are traced for each pixel in the final image, and because
each pixel spans an area on the view plane which has infinite resolution, each
view ray can also be interpreted as the center of a beam whose size and shape
changes as it propagates through the scene.

Consequently, a radiance estimate which is based on just the intersection point
x essentially assumes that the corresponding beam is very small, i.e. that a
large number of view rays are traced into the scene for every pixel in the final
image. Thus, the accuracy of the estimate can be improved by increasing the
number of view rays per pixel, but this is also quite costly in terms of required
rendering time since these are typically proportional.

Conversely, by taking into account the size and shape of the beam in each point
of intersection, it should be possible to improve the accuracy of the radiance
estimate without increasing the number of view rays per pixel, the resolution of
the photon map, or the number of evalauted photon differentials in each point
of intersection.

By associating each view ray with a ray differential, tracing the ray differential
alongside the view ray as it propagates through the scene, it is possible to
approximate the size and shape of the corresponding beam in each point of
intersection. I refer to the association of view rays and ray differentials as view
ray differentials. Similar to a photon differential, a view ray differential defines
the footprint of the beam in each point of intersection, and this footprint can
be taken into account in the radiance estimate.

For photon mapping with photon differentials, the inclusion of the footprint of
the view ray differential prompts the idea that the contribution of each photon
differential could be computed based on the intersection between the pair of
footprints, rather than just the filter space distance to the sampling point x.
Figure 10 on page 23 highlights three different scenarios, two of which should
benefit from taking into account the intersection between the involved footprints.

This section explores two different approaches which take into account the in-
tersection of the involved footprints. Both approaches define a new radiance
estimate based on the filtered radiance estimate for photon mapping with pho-
ton differentials, see section 3.3. As a precursor, the initialization of a view ray
differential is described in section 4.1.

22

X

(a) The sampling point z lies within the pho-
ton differential’s range of influence, and the
footprint of the view ray differential is com-

paratively small.

(b) The sampling point z lies outside the (¢) The sampling point z lies in the center
photon differential’s range of influence, but of the photon differential, but the footprint
the intersection between the involved foot- of the view ray differential also spans a much
prints lies inside this range. larger area than the area of the intersection.

Figure 10: Three example scenarios of the footprint of a view ray differential overlapping the
footprint of a photon differential. In these examples the footprints are coplanar, but note that this
is just for the sake of the simplicity of the illustration. The footprint of the view ray differential
is illustrated by the ellipse at the end of the beam extending from the viewpoint, with z being
the sampling point, while the footprint of the photon differential is illustrated by the ellipse with
center in xpq. The filled grey area marks the intersection between them. In (a), the footprint of
the view ray differential is relatively small, and in this case the filtered radiance estimate based on
just the sampling point z is an acceptable approximation. However, observe how in (b), the filtered
radiance estimate based on just the sampling point = will result in zero contribution, despite part of
the beam represented by the view ray differential actually overlapping the photon differential’s range
of influence. Also observe how in (c), the filtered radiance estimate will result in full contribution,
despite the footprint of the photon differential covering only a fraction of the footprint of the view
ray differential, thus affecting only a fraction of the beam and therefore only a fraction of the pixel
in the final image.

The first approach, described in section 4.2, explores the possibility of approxi-
mating the coverage and centroid of the intersection based on a two-dimensional
reconstruction of the geometry of the involved footprints, using the coverage and
centroid of the intersection to redefine the contribution of a photon differential
in the radiance estimate.

The second approach, described in section 4.3, explores the possibility of multi-
sampling the photon differential, using the footprint of the view ray differential
to define the sample distribution, thus implicitly taking into account the inter-
section between the involved footprints.

4.1 Initialization of view ray differential

A view ray is a ray whose starting point P is the viewpoint, and whose direction
V' describes a trajectory that intersects the view plane in some point x which
corresponds to the center of a pixel in the final image. Note that x in the
definition of V' is not to be confused with the variable of the same name in the

23

radiance estimate. Using the definition of V' from Equation 12 in section 3.1:

v
V = —
[[v]l

B z— P

|z — P

Similar to the initialization of a photon differential, section 3.2, assuming that
P is constant, the ray differential (dP,dV) of a view ray differential is given by:

dP = 0
(o)l — T

where dz is a 3 X 2 matrix whose columns describe the changes in x that govern
the initial change in V for each of two imaginary adjacent rays. Using « to
denote the vector parameter of the first imaginary ray, and 8 to denote the
vector parameter of the second imaginary ray, dx can be defined as:

e = [a §] (47)

To choose o and 3, observe that the view plane can be divided into segments,
where each segment corresponds to a pixel in the final image. For the view ray
differential to approximate a beam that occupies a full pixel in the final image,
« and [should be chosen such that they describe the world space extents of
the corresponding view plane segment. This is illustrated in Figure 11.

View plane, where each segment corresponds

to a pixel in the final image _\

P O/ I e —

Uyp Sy

u,

Tight

Figure 11: Illustration of the vector parameters o and B in relation to the view plane segment with
center in . Each segment on the view plane corresponds to a pixel in the final image, and « and
B should be chosen such that they cover the extents of the segment.

Given the world space width and height of a view plane segment, s,, and sy,
as well as two unit vectors that describe the horizontal and vertical axis of the
view plane in world space, Uright and uup, @ and § can be written as follows:

1

a = iswuright (48)
1
B = ishu‘m (49)

24

The process of tracing a view ray differential is similar to that of tracing a photon
differential. In each point of intersection @, the ray differential (dP, dV) is first
transferred, yielding d@, and then either reflected or refracted, yielding dWW.
The operations for transfer, reflection and refraction are described in sections
3.1.3 through 3.1.4.

Perhaps most importantly, the transferred differential position vectors d,Q and
dg(describe the footprint of the view ray differential on the tangential surface
in each point of intersection @, thus allowing the footprint of the view ray
differential to be taken into account in the radiance estimate, noting that x = @
in the radiance estimate.

4.2 Coplanar intersection-weighted photon differentials

Given a view ray differential with footprint (doQua, dgQua) in the sampling point
x, the surface normal n, in x, and the direction w of the path towards the view-
point, the intersection with a photon differential with footprint (daQpa, dgQpa)
in zpq can be approximated by the two-dimensional intersection between the
shapes inferred by the coplanar projections of the two footprints.

This section describes an approach which takes into account the intersection
between the involved footprints based two properties of their coplanar intersec-
tion. Specifically, the coplanar intersection can be used to obtain the photon
differential’s coverage of the view ray differential, as well as an approximation
of the centroid of the actual intersection, both of which are quantities that can
be used to refine the radiance estimate in terms of handling the scenarios shown
in Figure 10 on page 23.

4.2.1 Projection and rotation

Each footprint spans a completely arbitrary plane of some offset in space. Thus,
to be able to compute the coplanar intersection, the first step is to project them
onto a common plane. Because the goal is to compute the visible intersection
between the involved footprints, the direction of the projection is given by w,
which is the direction of the first leg of the path towards the viewpoint for the
current view ray.

In principle, given w as the direction of projection, any plane that intersects w
may be chosen as the plane onto which both footprints are projected. However,
because more than one photon differential will likely be considered for each view
ray differential, it makes sense to let the footprint of the view ray differential
define the common plane of projection. This way, the projection of the view ray
differential is already given, and the plane of projection remains the same for
each of the considered photon differentials.

Thus, noting that = is a point in the plane spanned by the footprint of the view
ray differential, and that n, is its surface normal, the projection g of some point
p along w is given by:

9(p) = pw(W) (50)

z W

25

Applying g to the position x,q of the photon differential yields its projected
position x7,;:
Tpa = 9(Tpa) (51)

The projected footprint (da Q)4 d3Q@)), illustrated in Figure 12, is obtained by
projecting the corresponding translations of the original position x,q and then
subtracting the projected position :E;d:

daQ;d = 9(Tpd + daQpa) — m;d (52)
dgQpg = g(xpa + dsQpa) — Ty (53)

Plane of projection

d B Q‘pd

Footprint of photon differential

d Q. to be projected along w

Figure 12: [Illustrates the projection of the footprint and position of a photon differential,
(daQpd,dgQpa) and z,q, onto the plane of projection as defined by the footprint of the view
ray differential, (daQuvd,dsQuva). The direction of the projection is given by w, and the result is
the projected footprint and projected position of the photon differential, (da Qpa, dsQpa) and x;d‘

Computing the intersection between two shapes in the same plane is essentially
a two-dimensional problem. However, because the orientation of the plane of
projection is arbitrary, it cannot be treated as a two-dimensional problem until
the plane is aligned with two axis of the root coordinate system, essentially
removing the influence of the third. Aligning the plane with two axis is synony-
mous with performing a rotation such that the surface normal becomes parallel
with the third axis.

The matrix R that defines this transformation is given by two unit vectors in
the plane as well as its surface normal. More specifically, knowing that d,Q,q
is a vector in the plane, R can be defined as:

B _daQua_ '
R o= [10aQud] (””ndac?vdn) na] (54

Noting that R is defined by the transpose of three orthogonal axis, it should be
clear that R defines a rotation from the plane of projection and into the plane
spanned by the first and second axis of the root coordinate system.

26

Then, using the position = of the view ray differential as the origin of rotation,
the projected and rotated position a?;’ ; of the photon differential is given by:

1"

'Tpd

= R(zpy—z)+z (55)

The projected and rotated footprint of the photon differential is easier to com-
pute, since the differential position vectors can be interpreted as directions and
therefore do not require translation:

dﬂQ;Zd = RdﬁQ;d (57)

Because the footprint of the view ray differential already lies in the plane of
projection, the projected and rotated footprint of the view ray differential is
obtained simply by rotating the original footprint:

daQ{U/d
dﬁdi

Rdand (58)
RdgQya (59)

Finally, since the rotation occurs around x, which is also a point in the plane of
projection, the projected and rotated position z” of the view ray differential is:

2 = (60)

Notice how, by letting the footprint of the view ray differential define the plane of
projection, R only needs to be computed once for each view ray differential. The
same is true for the projected and rotated footprint of the view ray differential.

4.2.2 Computing the intersection

Given the projected and rotated footprints (da @}y, ds@;) and (da @y, ds@))
and their offsets z” and a:;’d, the next step is to compute the intersection be-
tween the inferred two-dimensional shapes, noting that the third axis can be
disregarded since the rotated plane of projection is parallel to the plane spanned

by the first and second axis of the root coordinate system.

The shape of a footprint can be interpreted in a variety of ways. For example,
as mentioned in section 3.2.1, Schjgth et al. [8] describe the area of a footprint
as the area of a the parallelogram spanned by its differential position vectors.
Another interpretation is that of a skew ellipse, which is the two-dimensional
representation of the skew ellipsoid used in the definition of filter space in the
radiance estimate, see Equation 45 and Equation 46 in section 3.3.

How to compute the intersection between two shapes depends on how the shapes
are defined. For example, the intersection between two parallelograms can be
found by treating them as convex polygons and using a polygon clipping al-
gorithm. However, to analytically compute the intersection between two skew
ellipses is more complicated and a topic in its own right.

27

Instead of defining specialized methods for computing the intersection between
specific types of shapes, observe that both types used by Schjgth et al. [8], the
paralellogram and the skew ellipse, are convex. In general, under the assump-
tion that the shapes of the two involved footprints are convex, the intersection
between them can be approximated by discretizing the shapes into convex poly-
gons and then computing the intersection between these convex polygons.

As such, the intersection computation is generalized to the intersection between
convex polygons of any number of vertices, and it is the chosen discretization of
the shapes of the footprints that define how these are interpreted. The following
describes how to obtain the two-dimensional vertices of a convex polygon for
either a parallelogram or a skew ellipse in the plane of projection.

Parallelogram Given a projected and rotated footprint (d,Q"”,ds@"), the
N = 4 vertices of a convex polygon C describing a parallelogram in the
plane of projection are given by:

= deQ 4 Q"

p2 = —d.Q" + dﬁQ”

p3 = —doQ" — dﬁQ”

pto= daQ" — dpQ" (61)

Skew ellipse Generating the N vertices (p',...,p") of a convex polygon C
approximating a skew ellipse is possible by selecting IV points on the unit
circle with respect to the first two axis of the projected and rotated foot-
print (do@",dsQ"). More formally, the i’th vertex is given by:

i [danf dBQ’l’] lcos((il))] (62)
4@y ds@y | | sin (- 1)22)

where i € [1,2,..., N]. Note that, by selecting the vertices such that they
have uniform distribution on the unit circle, the resolution of the resulting
ellipse is greatest in regions with high curvature.

2I¥ =y

A variety of methods exist for computing the intersection between two con-
vex polygons. One such method is the classic polygon clipping algorithm by
Sutherland and Hodgman [10], which, given two polygons, one describing a
convex clip frame and one describing the subject, yields the vertices of a third
polygon which describes the subject within the clip frame. For two convex
polygons, the clip frame and the subject are interchangeable, and the result is
always a third convex polygon describing the intersection between them. The
Sutherland-Hodgman algorithm is described in further detail by Foley et al. [2].

Using Cyq and Cpq to denote the convex polygons describing the footprints of the
view ray differential and the photon differential, respectively, the intersection
between them can be computed by applying the Sutherland-Hodgman algorithm
with the parameters in any order. The result is a third convex polygon Cygnpd
that describes the two-dimensional intersection between the two footprints in
the rotated plane of projection.

28

4.2.3 Coverage and centroid

Using p’ to denote the i’th vertex of a convex planar polygon C, the area of the
polygon C' can be found by using the formula for the area of a planar polygon:

N—1
1 S i1
Ao = 5;#117’2* —pit'ph (63)

Given the convex polygons that describe the footprint of the view ray differential
as well as its intersection with the photon differential, Cy,q and C,g4npq, the
coverage of the photon differential, i.e. the fraction that the photon differential
covers of the view ray differential, can be expressed as follows:

Wydnpd = ﬁ (64)

The coverage of the photon differential can be employed directly as a weight in
the radiance estimate to handle scenarios like the one shown in Figure 10(c) on
page 23, where the view ray differential encompasses an area larger than its in-
tersection with the photon differential, and therefore the photon differential only
contributes to a fraction of the beam represented by the view ray differential.

Another useful property is the centroid of the intersection in the rotated plane
of projection. This is a point which can be obtained by averaging the positions
of the vertices of the convex polygon Cy4npq describing the intersection, i.e.:

1L,
Cpsrgs = 5 2P (65)
=1

The centroid in the rotated plane of projection can be used to approximate the
centroid of the actual three-dimensional intersection between the two footprints.
In turn, the centroid of the three-dimensional intersection can be used to handle
the scenario shown in Figure 10(b) on page 23, where the sampling point x lies
outside the photon differential’s range of influence while the centroid of the
intersection does not.

To approximate the centroid of the three-dimensional intersection, first express
the centroid z¢,,,,,, of the two-dimensional intersection as a linear combination
of the first two axis of the projected and rotated footprint of the view ray
differential, making sure the third component is zero, and then treat it as a
linear combination of the three axis of the original footprint of the view ray
differential to obtain a point in the root coordinate system. More formally, the
centroid of the three-dimensional intersection can be approximated as follows:

Lydnpd =~ T + |: dand dBde Ny :|

[(da Q)1 (ds Q)] 0
2

(da@Qiq)2 (dsQyy) 0
0 0 0
(xc1)dﬁpd - ‘TN) (66)

29

By replacing the sampling point x with £,4npq in the input to the filter kernel K,
the radiance estimate will effectively weigh each photon differential by its filter
space distance to the centroid of the intersection with the view ray differential,
rather than just the filter space distance to the sampling point x, which may lie
outside the photon differential’s range of influence, as shown in Figure 10(b).

Notice how one could also have chosen to approximate x,qnpa by expressing
TC,4npa With respect to the footprint of the photon differential. However, be-
cause the two-dimensional intersection is just an approximation based on the
projection of either footprint along w, this could potentially result in a point
outside the footprint of the view ray differential. Conversely, by choosing to
express Ic,,,,, With respect to the footprint of the view ray differential, the
approximation of the three-dimensional intersection may not always fall within
range of the photon differential, but in worst case this just results in zero con-
tribution, which is no worse than if the sampling point z is outside the range of
influence.

4.2.4 Computing the reflected radiance

Using the definitions of coverage wyqnpq and approximate centroid of intersec-
tion Zydnpq from the previous section, the filtered radiance estimate defined by
Schjgth et al. [8], see section 3.3, can be refined as follows:

k
)
Li(z,w) = Z f?'(xvwpd7w)ﬁK(||Mpd(xvdﬁpd — pa) |)wodrpa (67)
pd=1 p

In the above definition of the radiance estimate, each photon differential is
weighed according to the filter space distance to the approximate centroid 2,4npd
of the intersection between the involved footprints, rather than according to the
filter space distance to the sampling point x. Also, the filtered contribution
of a photon differential is scaled by the fraction that the intersection covers of
the view ray differential. These refinements handle the scenarios illustrated in
Figure 10(b) and Figure 10(c), respectively.

Because both the coverage and the centroid are properties derived from the
coplanar intersection between the involved footprints, I refer to this approach
as coplanar intersection-weighted photon differentials.

4.3 Multi-sampled photon differentials

Section 4.2 described an approach, in which the intersection between the in-
volved footprints was computed explicitly, using the coverage and centroid of
the intersection to refine the radiance estimate. However, it is also possible to
take into account the intersection implicitly.

This section describes a different approach, in which the footprint of the view
ray differential is used to define a set of sampling points used to multi-sample
the photon differential, thereby implicitly taking into account the intersection
between them. This approach can also be regarded as a direct approximation
of simply tracing more view rays per pixel.

30

4.3.1 Generating the sampling points

Given the footprint of the view ray differential, any point in the same plane
can be expressed as a linear combination of the differential position vectors
doQuva and dgQ,q, and the surface normal n, of the tangential surface in the
intersection point x.

Using s and t to describe the offsets along d,Q,q and dg@q, respectively, the
definition of a sampling point for the current view ray differential can be written:

S

Tst = T+ doQuva dﬁde Ng t (68)
0

The offsets s and t for the generated set of points can be chosen in infinitely
many ways, but in general they should be chosen such that the set of points
approximates the shape of the footprint of the view ray differential. Obviously,
this depends on how the shape of the footprint of the view ray differential is
interpreted, as well as the desired number of sampling points. For simplicity,
the remainder of this section will interpret the shape of the footprint of the view
ray differential as that of a parallelogram.

Using a parallelogram to define the shape of a footprint, the offsets for the set
of sampling points can be defined using an N x N grid, where N is the desired
number of indices along each side of the parallelogram. Specifically, the offsets
s and t specified for grid element ¢, j can be defined as:

“1+(i—1) (1\]2—1) (69)
b= = —14(—1) (N2_1) (70)

where i,j € [1... N] and N > 2. By iterating over the elements of the grid and
applying the offsets to Equation 68, the result is a set of sampling points that
outline the parallelogram, also filling its interior if N > 3. Figure 13 illustrates
the sample distribution using a 3 x 3 grid.

Sij =

Figure 13: The distribution of the generated sampling points using a 3 x 3 grid for the parallel-
ogram spanned by dqoQuq and doQuq. In this example, the set X of sampling points is given by
{ z-1,-1 , 2-10 , ®-11 , ®%o-1 , %oo0 , Toa1 , T1,-1 , 1,0 , T11 }.

Note that a slight inflexibility of using a grid-based distribution is the number
of generated sampling points, which is always N squared. Since N > 2, this

31

means that the minimum number of sampling points is 4. This not an issue
in practice, however, since at least 4 sampling points are necessary regardless,
in order to define a symmetric distribution that represents more than just a
straight line.

4.3.2 Computing the reflected radiance

Given a set X of sampling points distributed in the plane spanned by the
footprint of the view ray differential, the filtered radiance estimate defined by
Schjoth et al. [8], see section 3.3, can be refined as follows:

k N2
o, (1
Lr(xaw) ~ Z fT(xawpde)Aipd WZK(HMPd(Xl _xpd)H) (71)
pd=1 p i=1

where N2 is the number of sampling points in the set, and where X; denotes
the i’th sampling point from the set.

In the above definition of the radiance estimate, each photon differential is
weighed by multi-sampling the filter kernel K, one sample for each of the sam-
pling points in the set X, using the average of the results to determine the
contribution with respect to the sample distribution.

Because the sample distribution approximates the shape of the footprint of the
view ray differential, and because the filter space transformation M,q is based
on the footprint of the photon differential, see Figure 14, the above definition of
the radiance estimate implicitly takes into account the intersection between the
involved footprints, and inherently handles the two scenarios shown in Figure
10(b) and Figure 10(c), both on page 23.

Figure 14: Illustration of the intersection between a set of sampling points and the skew ellipsoid
that represents the world space boundaries of filter space for a given photon differential. The filter
space transformation M,q is based on the footprint of the photon differential, and a more formal
definition is given in section 3.3. In this example, the red dots denote sampling points that lie
outside the photon differential’s range of influence, which therefore receive zero contribution, while
the green dots denote sampling points that lie inside the range of influence. Note that the sampling
points do not have to be coplanar with the footprint of the photon differential, and that this is
simply the case in this example for the simplicity of the illustration.

Finally, because the filter kernel K is multi-sampled in filter space, and because
filter space is defined individually for each photon differential, I refer to this
approach as multi-sampled photon differentials.

In section 5, both multi-sampled photon differentials and coplanar intersection-
weighted photon differentials will be evaluated in comparison to the filtered
radiance estimate, which both approaches strive to improve.

32

5 Implementation and evaluation

Section 4 explores and defines two different approaches to incorporating the view
ray differential in the radiance estimate, namely coplanar intersection-weighted
photon differentials and multi-sampled photon differentials.

Both methods were defined based on the hypothesis that, by taking into account
the view ray differential, it should be possible to surpass the accuracy of the
regular filtered radiance estimate, defined by Schjgth et al. [8] and described in
section 3.3, without increasing the number of view rays per pixel, the resolution
of the photon map, or the number of gathered photon differentials in each point
of intersection.

In this section, a number of comparisons are made to determine whether the
above hypothesis holds true for either of the two new methods. Specifically, a
number of comparisons are made between images produced using the regular
filtered radiance estimate and images produced using each of the two new meth-
ods, in order to determine if either of the two new methods produce images that
represent a more accurate result.

To avoid relying on a subjective measure for the comparisons, it is necessary to
define what constitutes a more accurate — a better — result.

As discussed in section 4, the accuracy of the regular filtered radiance estimate
increases with the number of view rays per pixel. Thus, with the baseline being
the regular filtered radiance estimate with one view ray per pixel, a better
result can be defined as an image that approximates the image produced using
the regular filtered radiance estimate with more than one view ray per pixel.

Notice how this measure of success requires that the chosen test case clearly
shows the discrepancy between the images produced using the regular filtered
radiance estimate with one and more than one view ray per pixel, respectively.

With the purpose of being able to apply the new methods and the regular filtered
radiance estimate to the exact same test case, using the same parameters for the
photon map as well as the same distribution for the stored photon differentials,
I chose to implement the two new methods in an existing rendering framework,
which already contains a working reference implementation of photon mapping
with photon differentials written by Jeppe Revall Frisvad, who is one of the
co-authors of the paper on photon differentials by Schjgth et al. [8].

The framework itself is written in C4+4 and consists of several classes that
define camera, scene graph, loading a scene from disk, ray tracing operations,
building the photon map, finding the k-nearest photons, and so forth. My
implementation consists of the following additions to the framework:

e A new rendering class, which associates each view ray with a ray differ-
ential, and which parameterizes the radiance estimate by exposing it as a
function parameter.

e Two functors that implement the methods described in section 4, each of
which can then be passed as an argument to the new rendering class.

33

e Because ray propagation during the rendering stage is handled by the
shaders for the surface materials along a given path, my implementation
also extends a selection of the shaders in the framework to support the
propagation of a ray differential alongside the original view ray.

The source code to the implementation can be found in Appendix A.

Prior to defining the test case and carrying out the actual comparisons, it is
important to note that the rendering framework also implements the practical
optimizations discussed in section 2.2.2.

Most importantly, during the photon tracing stage the photon differentials are
stored in two seperate photon maps. One of them is the caustic photon map,
which stores caustic photon differentials, and the other is the global photon
map, which stores the rest. Caustic photon differentials are photon differentials
whose first intersection with the scene was with a specular surface.

Furthermore, during rendering it is possible to select a shader that results in
only the caustic photon differentials being considered in the radiance estimate.
The result is an image in which only the caustic photon differentials apply
light to the surfaces in the scene. Because caustics have a tendency to form
well defined contours, considering only the caustic photon differentials results
in high contrast between lit and unlit surfaces in the resulting image.

This is quite useful in terms of the evaluation, since it makes differences in the
results easier to discern. For this reason, I chose to base my comparisons on
renders where only the caustic photon differentials are taken into consideration
in the radiance estimate.

To summarize the plan for determining whether either of the two new methods
produce better results than the regular filtered radiance estimate:

e Comparisons will be made between a number of images based on a common
test case.

e Specifically, the images produced using the two new methods will be com-
pared to the images produced using the regular filtered radiance estimate.

e The measure of success is the image produced using the regular filtered
radiance estimate with more than one view ray per pixel.

The performance of the two new methods is evaluated in section 5.2. Using
the rendering times obtained when generating the images for the test case, the
performance evaluation provides the basis for a discussion of whether either of
the two new methods are usable in practice.

5.1 Image comparisons

For the common test case I chose a scene which consists of a reflective metal
ring placed on a planar diffuse surface. A render of this scene is shown in Figure
15 on page 35. Using 100000 and 20000 as the thresholds for emission of global
and caustic photon differentials, respectively, 100036 photons differentials were
stored in the global photon map, while 4978 photon differentials were stored in
the caustic photon map.

34

Figure 15: A render of the scene that constitutes the common test case. The ring is a specular
surface which reflects the incoming light onto the planar diffuse surface beneath it, thus forming a
caustic that is visible both in the planar surface beneath the ring, and in the reflective surface of
the inner band of the ring.

As shown in Figure 15, the chosen scene exhibits a caustic with a clearly defined
contour. A clearly defined contour is prone to undersampling artefacts as a result
of tracing too few view rays per pixel, or not taking into account the view ray
differential, and this is what makes this particular scene a good test case. Note
that the caustic photon differentials are all located on the planar surface, but
because the inner band of the ring is reflective, and because the view rays are
reflected onto the planar surface, the caustic is also visible in the inner band of
the ring.

In the comparisons that follow, the regular filtered radiance estimate is referred
to as the regular method. I chose the regular method with 3 x 3 view rays per
pixel as the measure of success. By the end of this section, it should be clear
that this is an acceptable choice, due to the visible discrepancy between the
images produced using the regular method with one and 3 x 3 view rays per
pixel, respectively.

The two new methods use just one view ray per pixel, but on the other hand they
depend on the initial configuration of the view ray differential. The initialization
of the view ray differential such that it overlaps a single pixel on the viewport
is described in section 4.1, and I use this configuration in the comparison.

For coplanar intersection-weighted photon differentials, there are no additional
parameters. For multi-sampled photon differentials, however, the results will
depend on the number of generated sampling points. As described in section
4.3.1, the number of generated sampling points is given by N x N, where N is
a parameter of the method. To avoid undersampling, I chose a relatively high
number of sampling points, i.e. N = 8.

With the method-specific parameters in place, the four different methods to
be used in the comparison are: The regular method, the regular method with
3 x 3 view rays per pixel, the coplanar intersection-weighted method, and the
multi-sampled method with 8 x 8 sampling points.

35

To make it easier to discern the differences between the resulting images, the
scene is rendered using only the photon differentials from the caustic photon
map as input to each method.

Figure 16 shows the images produced by each of the four methods when ren-
dering the scene using only the caustic photon differentials. For each method,
the maximum number of photon differentials to be considered in each point of
intersection is set to 50, i.e. k = 50.

(a) Regular, 1 x 1 view rays/pixel (b) Regular, 3 X 3 view rays/pixel

(c) Coplanar intersection-weighted (d) Multi-sampled, 8 x 8 sampling points

Figure 16: The images produced using each of the four methods when considering only the caustic
photon differentials. Without magnification it can be difficult to identify the differences between
them. The most notable differences appear in the clearly defined contours of the caustic, and Figure
17 on page 37 illustrates these more clearly by enlarging the region containing these contours.

At a first glance, the resulting images in Figure 16 appear to be mostly identical.
However, this is not true, but some magnification is necessary in order to visually
identify the differences between them.

With the purpose of illustrating the differences more clearly, knowing that the
most notable differences appear in the contours of the caustic that is visible
in and near the inner band of the ring, I enlarge the results and crop them to
the region which contains just these contours of the caustic. The enlarged and
cropped results are shown in Figure 17 on page 37.

36

(a) Regular, 1 x 1 view rays/pixel (b) Regular, 3 x 3 view rays/pixel

(c) Coplanar intersection-weighted (d) Multi-sampled, 8 x 8 sampling points

Figure 17: Enlarged and cropped results based on the images shown in Figure 16 on page 36. These
images illustrate the quality of the clearly defined contours of the caustic as rendered using each of
the four methods.

From the results in Figure 17 it is possible to make several observations:

1. First of all, the image produced by the regular method with one view ray
per pixel, see Figure 17(a), exhibits noticeable undersampling artefacts
along the contour of the caustic. This is expected, and underlines the
need to either trace more view rays per pixel or take into account the
view ray differential.

2. When comparing the images produced using the regular method with one
and 3 x 3 view rays per pixel, Figure 17(a) and Figure 17(b), it is imme-
diately apparent that the regular method with 3 x 3 view rays per pixel
produces a smoother contour with much fewer aliasing artefacts. This
is also expected, and validates the choice of treating the regular method
using 3 x 3 view rays per pixel as the measure of success.

3. Comparing the image produced using the coplanar intersection-weighted
method, Figure 17(c), to the images produced using both instances of
the regular method, Figure 17(a) and Figure 17(b), it should be quite

37

clear, based on the contour of the caustic, that the coplanar intersection-
weighted method results in at least some improvement over the regular
method.

4. More specifically, using the coplanar intersection-weighted method, many
of the undersampling artefacts exhibited by the regular method with one
view ray per pixel, see Figure 17(a), are eliminated, and as a result the
contour itself is more continuous, thus approximating the smooth contour
of the regular method with 3 x 3 view rays per pixel, Figure 17(b).

5. Unfortunately, the coplanar intersection-weighted method also introduces
some new artefacts. Looking at the left region of Figure 17(c), notice the
three black dots near the upper part of the caustic. These specific artefacts
are a result of not being able to compute the inverse of the submatrix in
Equation 66 in section 4.2, thereby causing the method to abort. In the
framework used for my implementation, computing the inverse of a 2 x 2
matrix relies on the determinant, and when the determinant is too small,
then the function that computes the inverse throws an error. In other
words, when the area of the footprint of the view ray differential is too
small, then the framework does not allow the computation of the inverse
of the submatrix in Equation 66 in section 4.2.

6. Comparing the image produced using the multi-sampled method, Figure
17(d), to the images produced using both instances of the regular method,
Figure 17(a) and Figure 17(b), observe how the multi-sampled method,
quite simply, produces a result which is completely superior to that of the
regular method with one view ray per pixel.

7. In fact, the contour in Figure 17(d) is even smoother and more contin-
uous than the contour in Figure 17(b), while still being equally well-
defined. This implies that, in terms of rendering caustics, the multi-
sampled method actually produces better results than the regular method
with 3 x 3 view rays per pixel. In other words, the multi-sampled method
both reaches and surpasses the measure of success for this evaluation.

Based on these observations, I can conclude that both new methods, namely
coplanar intersection-weighted photon differentials and multi-sampled photon
differentials, are capable of producing better results than the regular method
with one view ray per pixel. This is because they both approximate the results
produced by the regular method with 3 x 3 view rays per pixel.

For coplanar intersection-weighted photon differentials, note that the results
can only be considered marginally better based on the current implementation.
As mentioned in observation 5, this is due to the fact that a few new artefacts
are introduced in the resulting image, simply because the matrix library in the
rendering framework does not allow computing the inverse of 2 x 2 matrices with
a very small determinant. This limitation is obviously meant as a precaution
against numerical error, which is a valid concern. In principle, however, the
problem can be fixed by replacing the built-in function for the 2 x 2 inverse.

For multi-sampled photon differentials with 8 x 8 sampling points, the results
are very good, and as mentioned in observation 7, this method actually produces
better results than the regular method with 3 x 3 view rays per pixel.

38

However, when using multi-sampled photon differentials, one should also note
that choosing a relatively high number of sampling points is essential to ob-
taining stable results. The effects of varying the number of sampling points are
shown in Figure 18.

(a) Multi-sampled, 2 X 2 sampling points (b) Multi-sampled, 4 x 4 sampling points

(¢) Multi-sampled, 8 x 8 sampling points (d) Multi-sampled, 16 X 16 sampling points

Figure 18: The results produced using multi-sampled photon differntials for different choices N, i.e.
varying the number of sampling points. Notice the artefacts in (a) and (b), where N < 8, and how
the result changes very little in the jump from N =8 (c) to N = 16 (d).

To understand why artefacts appear in certain regions when the number of
sampling points is low, recall from section 3.3 that the raw irradiance of a
photon differential is its radiant power divided by the area of its footprint. As
such, when sampling a photon differential whose area is very small, the resulting
contribution has the potential to be very large, depending on the filter space
distance to the sampling point.

With multi-sampled photon differentials, the contribution of a photon differen-
tial is always an average of the contribution measured for each of the N x N
sampling points. If the contribution for one sampling point is very large, and the
number of sampling points is relatively low, then the contribution will still be
noticable even after averaging the results. As shown in Figure 18, the method
becomes stable at N = 8 as used in the evaluation.

39

5.2 Performance discussion

To evaluate the performance of the two new methods in comparison to both
configurations of the regular filtered radiance estimate, I compare the rendering
times obtained for each of the four methods when rendering the images shown
in Figure 16 on page 36. Table 1 shows the results.

Method Rendering time in seconds
Regular, 1 x 1 view rays/pixel 20.637
Regular, 3 x 3 view rays/pixel 183.255
Coplanar intersection-weighted 380.045
Multi-sampled, 8 x 8 sampling points 63.671

Table 1: Time in seconds for the four methods to render the images shown in Figure 16 on page 36.

From Table 1 it is easy to make the following observations:

1. Increasing the number of view rays per pixel results in a nearly linear
increase in rendering time.

2. Using coplanar intersection-weighted photon differentials, the rendering
time is about 19 times longer than when using the regular filtered radiance
estimate with one view ray per pixel, and more than 2 times longer than
when using the filtered radiance estimate with 3 x 3 view rays per pixel.

3. Using multi-sampled photon differentials with 8 x 8 sampling points, the
rendering time is about 3 times longer than when using the regular filter
radiance estimate with one view ray per pixel. However, the rendering
time is also about 3 times shorter than when using the regular filtered
radiance estimate with 3 x 3 times per pixel.

For coplanar intersection-weighted photon differentials, the long rendering time,
combined with the results of the image comparison in section 5.1, is reason
enough to disqualify this particular method for practical purposes, at least in
its current implementation. More specifically, because the method does not
rival the accuracy of the regular filtered radiance estimate with 3 x 3 view rays
per pixel, although it is an acceptable approximation, and because it is slower,
there is no reason to actually use it in practice, unless the rendering time can
be more than halved through optimizations.

To identify what causes the huge gap in performance for coplanar intersection-
weighted photon differentials, I examined the code using a freeware profiler
known as Sleepy'. Essentially, Sleepy identifies how much time is spent in each
part of the code based on a number of process samples taken over time. Figure
19 on page 41 shows the result of profiling the rendering process while rendering
an image using coplanar intersection-weighted photon differentials.

Using my current implementation of coplanar intersection-weighted photon dif-
ferentials, it is clear from from Figure 19 that approximately 91.5% of the

Thttp://www.codersnotes.com/sleepy

40

http://www.codersnotes.com/sleepy

File View Help

il ges | Call Stacks

Name Exclu... Inclus... % Exclusive % Inclusive * | 'Called From
ViewDiffTracer:compute_pixel 0.00s 140,605 0.00% 10000% || pame Sampm
PhotonCaustics::shade 0.00s 140.50s 0.00% 99.93% ViewDiffMethodCCro... 128.59¢
ViewDiff Tracer:caustics_irradiance 0.00s 140.50s 0.00% 99.92%
ViewDiffTracer:irradiance 0.00s 140.50s 0.00% 93.92%
ViewDiffMethodCCiioperator() 0.05s 140.43s 0.04% 99.87%
get_intersection 0.00< 128585 0.00% 91.45%
boost:geometry intersection< boost:geometryzm... 0.00s 127.765 0.00% 90.86%
boost:geometry dispatchrintersection<boostige... 0.01s 127.73s 0.01% 90.84% <~

4 (I}] +

Source

4 am | 3

Child Calls

compute the intersection of two convex 2d polygons using boost.geometzy

because the polygons are gusrantesd to be convex, it should be noted that

using beoost.gecmetry may be a suboptimal sclution due to the multi-puzpes MName Samp..
. nature of this particular library e
Polygon2D get_intersection(Polygen2D const & C_a, Polygon2D const & C_b) boost:geometry:zmo.. 049s
0.245
0.03s
boost::geometry::intersection(C_a, C_ b, C_gueue); std:deque<boost: 0.053s
boost:geometryzmo.. 0.01s

_RTC_CheckEsp 0.00s

| stdudeque<boost
std::deque<Polygon2D> C_gueus; @ stdsdeque<boost

if (C_gueue.sizel) > 0)
return C_queus.frent();
else
return Polygen2D();

Ll [3 4 am | 3

m Source file: c\usershlasse\desktop' photon\code\jrf_render\pathtrace\viewdiffm Linel

Figure 19: The result of using Sleepy to profile the rendering process during rendering using coplanar
intersection-weighted photon differentials. Notice how approximately 91.5% of the rendering time
is spent in get_intersection.

time is spent in the function get_intersection, which returns the intersec-
tion between the convex polygons describing the involved footprints. In turn,
get_intersection relies on the intersection function in the boost geometry
library to compute the intersection.

Considering the fact that boost geometry library supports more than just con-
vex polygons, it is possible that the use of their intersection function adds a
significant amount of overhead in comparison to a case-specific implementation
of Sutherland-Hodgman, for example. Unfortunately, it is not possible to esti-
mate the potential gain of replacing the intersection function of boost geometry
with a different algorithm, since the documentation of this function does not
specify which underlying algorithm is used for a particular set of inputs.

For multi-sampled photon differentials, however, the rendering times are very
acceptable. With 8 x 8 sampling points, recall from section 5.1 that multi-
sampled photon differentials actually surpasses the results produced using the
regular radiance estimate with 3 x 3 view rays per pixel. Thus, considering
the rendering times in Table 1 on page 40, multi-sampled photon differentials
provide a real and practical alternative to tracing more view rays per pixel.

Though not strictly necessary considering the results, it should also be possible
to optimize the implementation of multi-sampled photon differentials. Specifi-
cally, instead of applying the filter space transformation M, to the translation
of each sampling point such as done in Equation 71, M, could enter the defini-
tion of a sampling point, see Equation 68, in order to express the sampling points
directly with respect to the footprint of the view ray differential in filter space.
This would result in not having having to perform a matrix multiplication for
each sampling point, potentially increasing the speed of the method.

41

6 Conclusion

In the introductory chapters of this report, I have introduced the basics of pho-
ton mapping, going into moderate detail with both stages of the basic algorithm,
as well as described the concepts and theory of photon mapping with photon
differentials, including the general theory of ray diffentials. Regarding the the-
ory of ray differentials, I have also derived the necessary operations for tracing
a ray differential alongside a ray that propagates through the scene.

Based on the hypothesis that the accuracy of the radiance estimate can be
improved by also taking into account the footprint of the view ray differential,
I have explored two different approaches to incorporating the footprint of the
view ray differential in the filtered radiance estimate, defined by Schjgth et al
[8], for photon mapping with photon differentials.

This has led to two new methods for computing the reflected radiance, one
which explicitly computes the intersection between the coplanar footprints, and
one which uses the footprint of the view ray differential to multi-sample the
photon differential. I have named these methods coplanar intersection-weighted
photon differentials and multi-sampled photon differentials, respectively.

In order to determine whether the hypothesis holds true for either of the two new
methods, I implemented both of them in an existing rendering framework, which
already provided an implementation of photon mapping with photon differen-
tials, including the regular filtered radiance estimate. Using this framework, I
applied each method to a common test case and then compared the results.

By letting the results of the regular filtered radiance estimate with 3 x 3 view
rays per pixel define the direction of the measure of success, I found that both
new methods produce more accurate results than the filtered radiance estimate
with one view ray per pixel, and that one of them is superior.

Using coplanar intersection-weighted photon differentials, the results are slightly
better than the regular filtered radiance estimate, but unfortunately the required
rendering time is also much too high in comparison. By profiling the method, I
found that the culprit of the low performance is the intersection computation,
which accounts for approximately 91.5% of the rendering time. As a result, this
method is not very useful in practice without further optimization.

Using multi-sampled photon differentials, the results are much better than those
of the regular filtered radiance estimate. In fact, with 8 x 8 sampling points,
the resulting images clearly rival the images produced using the regular filtered
radiance estimate with 3 x 3 view rays per pixel. In terms of performance, the
method requires more time to render an image than the regular filtered radiance
estimate with one view ray per pixel. However, even with 8 x 8 sampling points,
it is three times faster than the regular filtered radiance estimate with 3 x 3
view rays per pixel.

I can conclude that, while coplanar intersection-weighted photon differentials
falls a bit short, multi-sampled photon differentials present a practical and rela-
tively fast alternative to tracing more view rays per pixel. With 8 x 8 sampling
points, the results of the method clearly rival those of the regular filtered radi-
ance estimate with 3 x 3 view rays per pixel, and it is also three times faster.

42

References

[1]

2]

R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval
on composite keys. Acta Informatica, 4:1-9, 1974. 10.1007/BF00288933.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer graphics:
principles and practice (2nd ed.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1990.

H. Igehy. Tracing ray differentials. In Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques, SIGGRAPH 99,
pages 179-186, New York, NY, USA, 1999. ACM Press/Addison-Wesley
Publishing Co.

H. W. Jensen. Global illumination using photon maps. In Proceedings of the
eurographics workshop on Rendering techniques 96, pages 21-30, London,
UK, 1996. Springer-Verlag.

H. W. Jensen. Realistic image synthesis using photon mapping. A. K.
Peters, Ltd., Natick, MA, USA, 2001.

J. T. Kajiya. The rendering equation. In Computer Graphics, pages 143—
150, 1986.

J. R. Magnus and H. Neudecker. Matriz Differential Calculus with Appli-
cations in Statistics and Econometrics. John Wiley & Sons, 1988.

L. Schjgth, J. R. Frisvad, K. Erleben, and J. Sporring. Photon differentials.
In Proceedings of GRAPHITE 2007, December 2007.

J. Sporring, L. Schjgth, and K. Erleben. Spatial and temporal ray differ-
entials. Technical report, Dept. of Computer Science, University of Copen-
hagen, 2009.

I. E. Sutherland and G. W. Hodgman. Reentrant polygon clipping. Com-
mun. ACM, 17:32-42, January 1974.

T. Whitted. An improved illumination model for shaded display. Commun.
ACM, 23:343-349, June 1980.

43

© 00N U W

A Source code

The files ViewDiffTracer.h through ViewDiffMethodMS.cpp contain the new
classes that define the view ray differential enabled renderer, as well as the two
methods described in section 4. The rest of the files, starting with Shader.h,
contain shader classes, which have been extended to support the propagation of
a ray differential along with the original view ray.

ViewDiffTracer.h i 44
ViewDiffTracer .CPP ...ttt 45
ViewDiffMethod.h 46
ViewDiffMethodCC.h i 47
ViewDiffMethodCC.CPP . vviiniiii i i 47
ViewDiffMethodMS.h i 51
ViewDAifEMethodMS . CPP - .. .v vttt e 51
Shader.h ... 52
PhotonCaustics.h ... 53
PhotonCausticCs.CPP ..ottt 53
PhotonLambertian.h o4
PhotonLambertian.cppc.oiiuiiiiiiiiii i 54
Transparent.h ... 56
TransSparent.CPP . ..vviiii 56
MAiTror. .l o 57
T o of o o o3 o o T 58
Metal.h ... 58
Metal.CPD ittt 99

ViewDiffTracer.h

/* ViewDiffTracer.h

Lasse Jon Fuglsang Pedersen <fuglsang@diku.dk>

14—10-2011
*/

#ifndef __VIEWDIFFTRACER-H__
#define __VIEWDIFFTRACER_-H__

#include "DifferentialTracer .h"
#include "ViewDiffMethod.h"

class ViewDiffTracer : public DifferentialTracer

private:
ViewDiffMethod const & f;

public:

ViewDiffTracer (
unsigned int w, unsigned int h, Scene * s,

44

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

38
39

41
42
43
44
45
46

48
49
50
51
52
53
54
55
56
57
58
59

61
62
63
64
65

OO W

unsigned int max_no_of_particles , float diff_smoothing = 10.0f,
unsigned int pixel_subdivs = 1,
ViewDiffMethod const & f = ViewDiffMethod ())

DifferentialTracer (w, h, s, max_no_of_particles , diff_smoothing ,
pixel_subdivs), f£(f)

{

}

/ *
modified version of compute-pixel, which associates each view ray with
a ray differential , passing both to the selected shader for the first
inter tion , which then takes care of any further propagation
(bas on lines 165 through 189 of ParticleTracer.cpp)

«/

CGLA :: Vec3f compute_pixel (unsigned int x, unsigned int y) const;

/ *
needed for tracing ray differentials through diffuse reflections
(based on lines 331 through 337 of DifferentialTracer.cpp)

«/

bool trace_cosine_weighted (Geometry ::Ray const & in, Geometry::Ray & out ,
RayDiff & dr) const;

/ *
estimate irradiance of photon differentials in given photon map

«/

CGLA :: Vec3f irradiance (PhotonDiffMap const & map, Geometry ::Ray const & r,
RayDiff const & dr, float max_distance , int no_of_particles) const;

/ *
estimate irradiance of caustic photon differentials

*/

CGLA :: Vec3f caustics_irradiance (Geometry ::Ray const & r,
RayDiff const & dr, float max_distance , int nc_of_particles) const ;

/*
estimate irradiance of global photon differentials

«/

CGLA :: Vec3f global_irradiance (Geometry ::Ray const & r,

RayDiff const & dr, float max_distance , int no_of_particles) const

}s

#endif //__VIEWDIFFTRACER-H__

3

ViewDiffTracer.cpp

/% ViewDiffTracer.cpp

Lasse Jon Fuglsang Pedersen <fuglsang@diku.dk>
14—10—2011

«/

#include "ViewDiffTracer .h"

“sampler .h"

#include
CGLA :: Vec3f ViewDiffTracer :: compute_pixel (unsigned int x, unsigned int y)

CGLA :: Vec3f result (0.0)

CGLA
CGLA
CGLA
CGLA ::

Vec2f vp_pos = CGLA ::Vec2f (x, y)*win_to_vp — lower_left;

Vec2f vp_pos_du CGLA ::Vec2f (x4+0.5, y)*win_to_vp — lower_left ;
Vec2f vp_pos_dv CGLA ::Vec2f (x, y+0.5)*win_to_vp — lower_left;
Vec2f vp_pos_jit;

Geometry :: Ray r;
RayDiff dr;

for (unsigned int ky = 0; ky < subdivs; ky++)
for (unsigned int kx = 0; kx < subdivs; kx++)
vp_pos_jit = vp_pos + jitter [kysxsubdivs + kx];
r = scene —>get_camera ()—>get_ray (vp_pos_jit);
dr .dpos = Differential (0.0f, 0.0f);
dr .ddir = Differential (0.0f, 0.0f);
vp_pos_jit = vp_pos_du + jitter [kyxsubdivs -+ kx];
dr .ddir .du = scene—>get_camera ()—>get_ray_dir (vp_pos_jit);
dr .ddir .du = normalize (dr.ddir.du) — r.direction;
vp_pos_jit = vp_pos_dv + jitter [kyxsubdivs + kx];
dr .ddir .dv scene —>get_camera ()—>get_ray_dir (vp_pos_jit);
dr .ddir .dv normalize (dr.ddir.dv) — r.direction;

if (scene—>intersect (r))

dr . transfer (r);

45

const

44
45

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

70
71
72
73
T4
75

7
78

80
81
82
83
84
85
86
87
88

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

Shader
if (s)

const * s

result += s—>shade (r, dr);
if (render_tex.has_texture ())
CGLA ::Vec2f pixel_pos = vp_pos + lower_left;
result += render_tex.sample_nearest (
pixel_pos [0], 1.0f — pixel_pos [1]
)
}
}
else
{
result += get_background(r.direction)
}
}
}
return result/static_cast <double >(subdivs*subdivs);
}
bool ViewDiffTracer ::trace_cosine_weighted (Geometry ::Ray const & in,
Geometry :: Ray & out ,
RayDiff & dr) const
{
static const double M_2SQRT2 = 2.0xsqrt (2.0);
CGLA :: Vec3f d = sample_cosine_weighted (in.hit_normal);
CGLA :: Quatf q;
q.make_rot (d, in.direction);
dr .ddir.du = q.apply_unit (dr.ddir.du);
dr .ddir.dv = q.apply_unit (dr.ddir.dv);
dr .dpos %= M_2SQRT2;
out .origin = in.hit_pos;
out .direction = d;
out .trace_depth = in.trace_depth 4 1;
out .did_hit_diffuse = in.did_hit_diffuse
return trace (out , dr);
}
CGLA :: Vec3f ViewDiffTracer :: irradiance (PhotonDiffMap const & map,
Geometry :: Ray const & r,
RayDiff const & dr,
float max_distance
int no_of_particles) const
{
NearestPhotons <PhotonDiff > np;
float vd_radius2 = std::max(
CGLA :: sqr_length (dr.dpos .du),
CGLA :: sqr_length (dr.dpos .dv)
)
np.dist2 (float *)alloca(sizeof (float) * (no_of_particles-+1));
np.index = (const PhotonDiff %)
alloca (sizeof (PhotonDiff) * (no_of_particles-+1));
np.pos [0] = r.hit_pos [0];
np.pos [1] = r.hit_pos [1];
np.pos [2] = r.hit_pos [2];
np.max = no_of_particles; // k
np.found 0;
np.got_heap = O0;
np.dist2[0] = vd_radius2 + map.get_longest_dpos ();
map.locate_photons(&np, 1);
return f(np, map, r, dr);
}
CGLA ::Vec3f ViewDiffTracer :: caustics_irradiance (Geometry ::Ray const & r,
RayDiff const & dr,
float max_distance ,
int no_of_particles)
{
return irradiance (caustic_diffs , r, dr, max_distance , no_of_particles);
}
CGLA :: Vec3f ViewDiffTracer :: global_irradiance (Geometry :: Ray const & r,
RayDiff const & dr,
float max_distance ,
int no_of_particles)
{
return irradiance (global_diffs , r, dr, max_distance , no_of_particles);
}

get_shader (r);

const

const

ViewDiffMethod.h

46

©00 oUW

© 00N W

© 00U W=

/* ViewDiffMethod.h

Lasse Jon Fuglsang Pedersen <fuglsang@diku.dk>
14—10-2011

*/

#ifndef __VIEWDIFFMETHOD-H__
#define __VIEWDIFFMETHOD_-H.__

#include "CGLA/Vec3f.h"
#include "Geometry/Ray.h"
#include "PhotonDiff .h"

class ViewDiffMethod

public:
/ *
operator () in the derived class should estimate the contribution of
the k—nearest photon differentials ’'np’ from the photon map ’map’,
given a ray ’'r’ with associated ray differential ’dr’
*
/

virtual CGLA ::Vec3f operator () (
NearestPhotons <PhotonDiff > const & np, PhotonDiffMap const & map,
Geometry :: Ray const & r, RayDiff const & dr) const
return CGLA ::Vec3f (0.0);
}

#endif //__VIEWDIFFMETHOD_H__

ViewDiffMethodCC.h

/* ViewDiffMethodCC .h

Lasse Jon Fuglsang Pedersen <fuglsang@diku.dk>
14—10-2011

*/

#ifndef __VIEWDIFFMETHODCC_H_-
#define __VIEWDIFFMETHODCC_H__
#include "ViewDiffMethod.h"

class ViewDiffMethodCC : public ViewDiffMethod

public:
CGLA :: Vec3f operator () (
NearestPhotons <PhotonDiff > const & np, PhotonDiffMap const & map,
Geometry :: Ray const & r, RayDiff const & dr) const;

}

#endif //_VIEWDIFFMETHODCC_H__

ViewDiffMethodCC. cpp

/* ViewDiffMethodCC.cpp

Lasse Jon Fuglsang Pedersen <fuglsang@diku.dk>
14—10-2011

*/

#include "ViewDiffMethodCC.h"

#include "CGLA/Vec2f.h"

#include "CGLA/Mat2x2f.h"

#include "CGLA/Mat3x3f.h"

#include "boost/geometry.hpp"

#include "boost/geometry/geometries/point_xy.hpp"
#include "boost/geometry/geometries/polygon.hpp"
#include "boost/foreach.hpp"

model
model

typedef boost
typedef boost

geometry
geometry

d2 ::point_xy <float > Point2D;
ring <Point2D , false> Polygon2D ;

/%
projects a point ’'p’ onto the plane of projection defined by the tangential
surface in the point of intersection for the current view ray ’'r’

the direction of the view ray as the direction of projection

using

47

24
25

27
28
29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45

47
48

50
51
52
53
54
55
56
57
58

60
61
62
63
64
65
66
67
68

70
71
72
73
74
75
76
77
78

80
81
82
83
84
85
86
87
88
89
90
91

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

*/
CGLA

{

*/

Diff

*/

CGLA ::

*/

CGLA ::

/%
*/

Diff

/ *

*/

Poly

{

::Vec3f project(Geometry::Ray const & r, CGLA::Vec3f const & p)
CGLA :: Vec3f x = r.hit_pos;
CGLA ::Vec3f n = r.hit_normal;
CGLA :: Vec3f omega = —CGLA ::normalize(r.direction);
return (p — omega * (CGLA::dot(m, p — x) / CGLA::dot(n, omega)));
projects the differential position vectors of a footprint ’'d’ onto the
plane of projection, also given its position ’p’ and projected position
"p_proj’
erential project (Geometry ::Ray const & r, Differential const & d,
CGLA :: Vec3f const & p, CGLA::Vec3f const & p_proj)
Differential d_proj;
d_proj.du = project(r, p + d.du) — p_proj;
d_proj.dv = project(r, p + d.dv) — p_proj;
return d_proj;
constructs a matrix that defines a rotation from the plane of projection
defined by the current view ray 'r’ and a footprint ’'d’, and into a plane
parallel to the x— and y—axis of the root coordinate frame
Mat3x3f get_rotation (Geometry ::Ray const & r, Differential const & d)

CGLA :: Vec3f du = CGLA ::normalize (d.du);
/ *

note that the params of the Mat3x3f constructor are the rows of the

matrix , which means that the returned matrix == R"T (see section 4.2)
«/
return CGLA ::Mat3x3f (du, CGLA::cross(r.hit_normal , du), r.hit_normal);
applies a rotation 'R’ to a point ’p’, using ’x’ as the center of rotation

Vec3f rotate (CGLA :: Mat3x3f const & R, CGLA::Vec3f const & p,
CGLA Vec3f const & x)

return Rx(p — x) + x;

applies a rotation 'R’ to a

erential rotate (CGLA :: Mat3x3

return Differential (Rxd.du,

f

£

R

cotprint ’d’
const & R, Differential const & d)
*d.dv) ;

constructs a 2d parallelogram from a projected and rotated footprint
"d_proj’ and its projected position ’p_proj assuming prior rotation of
both parameters into a plane parallel to the x— and y—axis of the root
coordinate system since the third component is ignored
gon2D get_parallelogram(Differential const & d_proj ,
CGLA :: Vec3f const & p_proj)
Polygon2D C;
CGLA Vec3f qi;
CGLA :: Vec3f q2
CGLA Vec3f q3;
CGLA Vec3f q4;
/ *
vertices must be added in counter—clockwise order so we have to check
the determinant of the 2d differential position vectors to decide the
primary axis
*/
if (d_proj.du[0] % d_proj.dv([1l] —
d_proj.dv[0] % d_proj.duf[l] < 0.0)
{
// negative => ccw using dv as primary axis
q1 = p_proj 4+ d_proj.dv 4+ d_proj.du;
q2 p_proj — d_proj.dv + d_proj.du;
q3 p_proj — d_proj.dv — d_proj.du;
q4 = p_proj + d_proj.dv — d_proj.du;
else
{
// positive => ccw using du as primary axis
q1 = p_proj + d_proj.du + d_proj.dv;
q2 = p_proj — d_proj.du 4+ d_proj.dv
q3 p_proj — d_proj.du — d_proj.dv;
q4 p_proj -+ d_proj.du — d_proj.dv;
}
boost geometry append (C, Point2D (q1[0], q1[1]));
boost geometry append (C, Point2D (q2[0], q2[1]));
boost geometry :: append (C, Point2D (q3[0], q3[1]));

48

123 boost :: geometry :: append (C, Point2D (q4[0], q4[1]))
at [1]1))

124 boost :: geometry :: append (C, Point2D (q1[0], ;

125

126 return C;

127 |}

128

129 |/«

130 constructs a 2d skew ellipse from a projected footprint ’d_proj’ and its
131 projected position ’'p_proj’, using the specified number of vertices

132 ‘num-_vertices’ (defaults to 20), and assuming prior rotation of both

133 parameters into 2d as the third component is ignored

134 | =/

135 Polygon2D get_skew_ellipse(Differential const & d_proj ,

136 CGLA :: Vec3f const & p_proj , int num_vertices = 20)
137 {

138 Polygon2D c;

139 CGLA :: Mat2x2f M_skew_ellipse;

140 CGLA Vec2f q;

141 CGLA :: Vec2f q0 (p_proj [0], p_proj [1]);

142 float t;

143

144 /%

145 vertices must be added in counter—clockwise order so we have to check
146 the determinant of the 2d differential position vectors to decide the
147 primary axis

148 */

149 if (d_proj.du[0] * d_proj.dv[1l] —

150 d_proj.dv[0] % d_proj.du[l] < 0.0)

151

152 // mnegative => ccw ing dv as primary axis

153 M_skew_ellipse = CGLA :: Mat2x2f (

154 CGLA ::Vec2f (d_proj.dv[0], d_proj.du[0]),

155 CGLA ::Vec2f (d_proj.dv[1], d_proj.du[l])

156)

157 }

158 else

159

160 // positive => ccw using du as primary axis

161 M_skew_ellipse = CGLA Mat2x2f (

162 CGLA :: Vec2f (d_proj.du[0], d_proj.dv[0]),

163 CGLA ::Vec2f (d_proj.du[l], d_proj.dv[1])

164)

165 }

166

167 // sample points on unit circle , transforming them before appending them
168 for (int i = 0; i < num_vertices; i++4)

169

170 t = ((float)i / (float)num_vertices) * (2.0 = M_PI);

171 q = q0 + M_skew_ellipse % CGLA::Vec2f (cos(t), sin(t));

172 boost :: geometry :: append (C, Point2D (q[0], q[1]));

173 }

174

175 t = 0.0;

176 q = q0 + M_skew_ellipse % CGLA::Vec2f (cos(t), sin(t));

177 boost :: geometry :: append (C, Point2D (q[0], q[1]));

178

179 return C;

180 }

181

182 | /=

183 compute the intersection of two convex 2d polygons using boost.geometry
184

185 because the polygons are guaranteed to be convex, it should be noted that
186 using boost.geometry may be a suboptimal solution due to the multi—purpose
187 nature of this particular library

188 | =/

189 Polygon2D get_intersection(Polygon2D const & C_a, Polygon2D const & C_b)
190
191 std :: deque <Polygon2D > C_queue ;
192
193 boost :: geometry :: intersection(C_a, C_b, C_queue)
194
195 if (C_queue.size () > 0)

196 return C_queue.front ();
197 else

198 return Polygon2D ();

199 |}

200
201 / *

202 compute the area of a convex 2d polygon using boost.geometry
203 */

204 | float area(Polygon2D const & C)

205 {

206 return std::abs(boost :: geometry ::area(C));

207 |}

208
209 CGLA :: Vec3f centroid (Polygon2D const & C)
210
211 Point2D centroid = boost :: geometry :: return_centroid <Point2D , Polygon2D >(C);
212 return CGLA ::Vec3f (centroid.x(), centroid.y(), 0.0);

213 |}

214
215 | CGLA ::Vec3f ViewDiffMethodCC :: operator () (NearestPhotons <PhotonDiff > const & np,
216 PhotonDiffMap const & map,

217 Geometry :: Ray const & T,

218 RayDiff const & dr) const

219 | {

220 CGLA :: Vec3f irrad (0.0f);
221

49

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

CGLA Vec3f x_vd = r.hit_pos;

CGLA Vec3f n_vd = r.hit_normal;

CGLA :: Mat3x3f R_vd = get_rotation(r, dr.dpos);
Differential d_vd = rotate(R_vd, dr.dpos);
Polygon2D C_vd = get_parallelogram(d_vd, x_vd);
float A_vd = area(C_vd);

CGLA :: Vec3f x_pd;

Differential d_pd;

Polygon2D C_pd;

float A_pd;

float w_pd;

CGLA :: Mat3x3f M_pd;

CGLA :: Vec3f x_is;

Polygon2D C_is

float A_is

float w_is;

CGLA :: Mat2x2f M_is_sub;

CGLA :: Mat3x3f M_is;

// generate matrix that transforms the centroid of the intersection in

// into 3d by
// projected

d with
rential

centr
diff

expr sing the 2d
and rotated

view ray

respect to the

and then applying the

// of the original footprint (see section 4.2.3 for more information)
try
{
M_is_sub = CGLA :: invert (CGLA :: Mat2x2f (
CGLA ::Vec2f (d_vd.du[0], d_vd.dv[0]),
CGLA ::Vec2f (d_vd.du[1], d_vd.dv[1])
)
catch (CGLA :: Mat2x2fException e)
return CGLA ::Vec3f (0.0); // abort
}
M_is = CGLA :: Mat3x3f (
CGLA :: Vec3f (dr.dpos.du (0], dr.dpos.dv[0], n_vd[0]),
CGLA :: Vec3f (dr.dpos.du[1], dr.dpos.dv[1], n_vd[1]),
CGLA :: Vec3f (dr.dpos.du[2], dr.dpos.dv[2], n_vd[2])
) % CGLA:: Mat3x3f (
CGLA Vec3f (M_is_sub [0][0O], M_is_sub[O0][1], 0.0),
CGLA Vec3f (M_is_sub [1][0], M_is_sub [1][1], 0.0),
CGLA ::Vec3f (0.0, 0.0, 0.0)
)
// sum irradiance of k—nearest photons

for (int i = 1; i <= np.found; i++)

PhotonDiff const * pd = np.index [i];

// skip if not incident on tangential

if (dot(map.photon_dir(pd), n_vd) <= 0.0f)
continue ;
// compute area of the footprint in local

// (based on line 70 of
A_pd = cross (pd—>dpos .du,

PhotonDiff.cpp)

pd—>dpos .dv) .

// skip if area is very small

if (A_pd < 1.0e—12f)
continue ;

// compute world space —> filter space
try
{
CGLA ::Vec3f const & du_pd = pd—>dpos.du;
CGLA ::Vec3f const & dv_pd = pd—>dpos.dv;
M_pd = CGLA :: invert (CGLA :: Mat3x3f (
CGLA :: Vec3f (du_pd [0], dv_pd[0], n_vd
CGLA ::Vec3f (du_pd [1], dv_pd[1], n_vd
CGLA ::Vec3f (du_pd [2], dv_pd[2], n_vd
)) s
catch (CGLA::Mat3x3fSingular e)
continue ;
}
// project
x_pd project (r, pd—>pos);
d_pd = project (r, pd—>dpos, pd—>pos, x_pd);
// rotate into 2d
x_pd = rotate(R_vd, x_pd, x_vd);
d_pd = rotate(R_vd, d_pd);
// reconstruct geometry
C_pd = get_parallelogram(d_pd, x_pd);
// compute coplanar intersection
C_is = get_intersection(C_vd, C_pd);
A_is = area(C_is);
// skip if area of intersection is zero
if (A_is <= 0.0)

50

surface

coordinates

length () *xM_PI;

transformation

[ol)
[11)
[21)

// projected
// projected

position
footprint

2d

axis of the

axis

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

© 00N U AW

© 00N U AW

continue ;

// compute coverage of coplanar intersection
w_is = A_is / A_vd;

// approximate centroid of actual intersection
x_is = x_vd + M_is % (centroid(C_is) — x_vd);

// compute sampling point in filter space
CGLA ::Vec3f x_is_filter = M_pd % (x_is — pd—>pos);

// compute squared distance in filter space
float x_is_filter_dist2 = CGLA::sqr_length(x_is_filter);

// skip if outside range of influence

if (x_is_filter_dist2 > 1.0f || CGLA::isnan(x_is_filter_dist2))

continue ;
// use the Silverman kernel (same as PhotonDiff.cpp line 92)
w_pd = CGLA::sqr (1.0f — x_is_filter_dist2);

// compute irradiance
irrad += (pd—>power / A_pd) * w_pd x w_is;

}

// done
return (3.0 x irrad);

ViewDiffMethodMS.h

/* ViewDiffMethodMS .h

Lasse Jon Fuglsang Pedersen <fuglsang@diku.dk>
14—10-2011

*/

#ifndef __VIEWDIFFMETHODMS_-H_-
#define __VIEWDIFFMETHODMS_H_-

#include "ViewDiffMethod.h"
class ViewDiffMethodMS : public ViewDiffMethod

private:

unsigned int N;
float N_step;
CGLA :: Vec3f = X;

public:
ViewDiffMethodMS (unsigned int sqrt_num_samples = 3);

CGLA ::Vec3f operator () (

NearestPhotons <PhotonDiff > const & np, PhotonDiffMap const & map,

Geometry :: Ray const & r, RayDiff const & dr) const;

}

#endif //__VIEWDIFFMETHODMS_H_-

ViewDiffMethodCC. cpp

/* ViewDiffMethodMS .cpp

Lasse Jon Fuglsang Pedersen <fuglsang@diku.dk>
14—-10-2011

*/

#include "ViewDiffMethodMS .h"
#include "CGLA/Mat3x3f.h"

ViewDiffMethodMS :: ViewDiffMethodMS (unsigned int sqrt_num_samples)

N = std::max(static_cast <unsigned int >(2), sqrt_num_samples);

N_step
X

2.0 / static_cast <float>(N — 1);
new CGLA::Vec3f [N x NJ;

}
CGLA ::Vec3f ViewDiffMethodMS :: operator () (NearestPhotons <PhotonDiff >

PhotonDiffMap const & map,
Geometry :: Ray const & r,

o1

const & np,

21 RayDiff const & dr) const
22 | {

23 CGLA :: Vec3f irrad (0.0f);

24

25 CGLA :: Vec3f x_vd = r.hit_pos;

26 CGLA Vec3f n_vd = r.hit_normal;

27 CGLA Mat3x3f M_vd ;

28

29 float A_pd;

30 CGLA :: Mat3x3f M_pd;

31 float w_pd = 0.0;

32

33 // generate sampling points

34 M_vd = CGLA :: Mat3x3f (

35 CGLA :: Vec3f (dr.dpos.du[0], dr.dpos.dv[0], n_vd[0]),
36 CGLA :: Vec3f (dr.dpos.du[l], dr.dpos.dv[1l], n_vd[1]),
37 CGLA ::Vec3f (dr.dpos.du[2], dr.dpos.dv[2], n_vd[2])
38)3

39

40 for (unsigned int i = 0; i < N; i+4+)

41

42 for (unsigned int j = 0; j < N; j4++)

43

44 float s = static_cast <float >(i) * N_step — 1.0;
45 float t = static_cast <float >(j) * N_step — 1.0;
46

a7 X[i*N + j] = x_vd + M_vd % CGLA::Vec3f(s, t, 0.0);
48 }

49 }

50

51 // sum irradiance of k—nearest photons

52 for (int i = 1; i <= np.found; i++)

53

54 PhotonDiff const * pd = np.index [i];

55

56 // skip if not incident on tangential surface

57 if (dot (map.photon_dir(pd), n_vd) <= 0.0f)

58 continue ;

59

60 // compute area of the footprint in local coordinates
61 // (based on line 70 of PhotonDiff.cpp)

62 A_pd = cross (pd—>dpos.du, pd—>dpos.dv).length ()*M_PI;
63

64 // skip if area is very small

65 if (A_pd < 1.0e—12f)

66 continue ;

67

68 // compute world space —> filter space transformation
69 try

70 {

71 CGLA ::Vec3f const & du_pd = pd—>dpos.du;

72 CGLA ::Vec3f const & dv_pd = pd—>dpos.dv;

73

74 M_pd = CGLA:: invert (CGLA :: Mat3x3f (

75 CGLA :: Vec3f (du_pd [0], dv_pd [0], n_vd[O0]),
76 CGLA :: Vec3f (du_pd [1], dv_pd[1], n_vd[1]),
77 CGLA ::Vec3f (du_pd [2], dv_pd[2], n_vd[2])
78))s

79

80 catch (CGLA::Mat3x3fSingular e)

81

82 continue ;

83 }

84

85 // loop over sampling points

86 for (unsigned int j = 0; j < N % N; j+4)

87 {

88 // compute sampling point in filter space

89 CGLA ::Vec3f x_st_filter = M_pd = (X[j] — pd—>pos);
90

91 // compute squared distance in filter space

92 float x_st_filter_dist2 = CGLA::sqr_length(x_st_filter);
93

94 // skip if outside range of influence

95 if (x_st_filter_dist2 > 1.0f || CGLA::isnan(x_st_filter_dist2))
96 continue ;

97

98 // use the Silverman kernel (same as PhotonDiff.cpp line 92)
99 w_pd += CGLA ::sqr (1.0f — x_st_filter_dist2);
100 1

101

102 // average weights

103 w_pd /= static_cast <float >(N % N);

104

105 // compute irradiance

106 irrad += (pd—>power / A_pd) * w_pd;

107 }

108

109 // done

110 return (3.0 % irrad);

111 |}

Shader.h

52

©00 oUW

15
16
17
18

20
21
22
23
24
25

© 00Uk W

26
27
28
29
30
31

33
34

© 00U AW

#ifndef SHADER-H
#define SHADER-H
#include "CGLA/Vec3f.h"
#include "Geometry/Ray.h"
#include "RayDiff .h"
class Shader
public:

virtual CGLA ::Vec3f shade (Geometry ::Ray& r, bool emit = true) const =

/* fuglsang begin x/

virtual CGLA ::Vec3f shade(Geometry::Ray& r, RayDiff& dr, bool emit =

const
{
/*std ::cout
<< ”shade () cannot propagate ray differential , aborting”
<< std::endl;x*/
return CGLA::Vec3f (0.0, 0.0, 0.0);

}

/% fuglsang end x/
}
#endif // SHADER-H

0

true) <

PhotonCaustics.h

#ifndef PHOTONCAUSTICS.-H

#define PHOTONCAUSTICS.-H

#include "CGLA/Vec3f .h"

#include "Geometry/Ray.h"

#include "ParticleTracer .h"

#include "MCLambertian .h"

#include "RayDiff .h"

class PhotonCaustics public

{

public:

PhotonCaustics (ParticleTracer *

const std::
float max_distance_in
int no_of_photons_i

MCLambertian (particle_tracer ,
tracer (particle_tracer),
max_dist (max_distance_in

MCLambertian

particle_tracer ,
vector <Light*>& 1light_vector ,

_estimate ,

n_estimate)

light_vector),

_estimate) ,

photons (no_of _photons_in_estimate)

{13

virtual CGLA ::Vec3f

/% fuglsang begin x/

virtual CGLA ::Vec3f
const

shade (Geometry

shade (Geometry

/* fuglsang end x/

protected:
ParticleTracer *
float max_dist ;
int photons

}

#endif

tracer

// PHOTONCAUSTICS_H

::Ray& r, bool emit = true) const;

::Ray & r, RayDiff & dr, bool emit =

true) <=

PhotonCaustics.cpp

"CGLA/Vec3f .h"
"Geometry/Ray.h"
"PhotonCaustics .h"

#include
#include
#include

/+ fuglsang */
#include "ViewDiffTracer
/+ fuglsang */

CGLA ;
Geometry ;

begin
.h"
end

using
using

namespace
namespace
Vec3f

PhotonCaustics :: shade (Ray& r,

Vec3f result =

tracer —>caustics_irradiance (r,

bool emit) const

max_dist photons);

53

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

©00 oUW~

21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38

40
41
42
43
44
45
46
47

0NO U A WN

result %= get_diffuse (r)/M_PI;

return result 4+ Emission ::shade(r, emit); // 4+ MCLambertian::shade(r, emit)
/% fuglsang begin x/
CGLA :: Vec3f PhotonCaustics :: shade(Geometry ::Ray & r, RayDiff & dr,
bool emit) const
{
ViewDiffTracer * vdtracer = static_cast <ViewDiffTracer x>(tracer);
if (!vdtracer)
return Shader ::shade(r, dr, emit);
CGLA :: Vec3f result = vdtracer —>caustics_irradiance (
r, dr, max_dist , photons);
result x= get_diffuse (r)/M_PI;
return result 4 Emission shade (r, emit);
}
/% fuglsang end x/
#ifndef PHOTONLAMBERTIAN_H
#define PHOTONLAMBERTIAN_H
#include "CGLA/Vec3f.h"
#include "Geometry/Ray.h"
#include "ParticleTracer .h"
#include "PhotonCaustics.h"
#include "RayDiff .h"
class PhotonLambertian : public PhotonCaustics
{
public:
PhotonLambertian (ParticleTracer* particle_tracer ,
const std::vector <Light*>& light_vector ,
float max_distance_in_estimate ,
int no_of_photons_in_estimate ,
bool use_final_gathering = true ,
unsigned int no_of_samples = 1,
const PhotonCaustics* caustics_shader = 0)
PhotonCaustics (particle_tracer , light_vector , max_distance_in_estimate , <

no_of _photons_in_estimate),
gather (use_final_gathering),
samples (no_of_samples),
caustics (caustics_shader)

{1}

virtual CGLA::Vec3f shade(Geometry::Ray& r, bool emit = true) const;
/+ fuglsang begin */

virtual CGLA::Vec3f shade(Geometry::Ray & r, RayDiff & dr, bool emit

const ;
/% fuglsang end x/

bool is_gathering () const { return gather; }
void toggle_final_gathering() { gather = !gather; }

protected:

CGLA :: Vec3f split_shade (Geometry ::Ray& r, bool emit) const;

CGLA Vec3f shade_new_ray (Geometry ::Ray& r) const;

/+ fuglsang begin */

CGLA :: Vec3f split_shade (Geometry::Ray & r, RayDiff & dr, bool emit)

CGLA Vec3f shade_new_ray (Geometry::Ray & r, RayDiff & dr) const;
/% fuglsang end x/

bool gather;
unsigned int samples;
const PhotonCaustics* caustics ;

3

#endif // PHOTONLAMBERTIAN_H

= true) <+

const ;

PhotonLambertian. cpp

#include "CGLA/Vec3f.h"
#include "Geometry/Ray.h"
#include "PhotonLambertian.h"

/% fuglsang begin x/

#include "ViewDiffTracer .h"
/% fuglsang end x/

54

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36

38

39
40
41
42

44
45
46
47
48
49
50
51
52
53
54

55

57
58

60
61
62
63
64
65

67
68

70
71
T2
73
T4
75

7
78

80
81
82
83
84
85

87
88

90
91
92
93
94
95

97
98

100
101
102
103
104
105
106

us
us

ing namespace CGLA;
ing namespace Geometry;

Vec3f PhotonLambertian :: shade (Ray& r, bool emit) const

}

if (gather && !r.did_hit_diffuse)

return split_shade (r, emit);
Vec3f result = tracer —>global_irradiance (r, max_dist , photons);
result %= get_diffuse(r)/static_cast <float >(M_PI);
return result 4+ Emission::shade(r, !gather);

Vec3f PhotonLambertian ::split_shade (Ray& r, bool emit) const

{

}

Vec3f result = Lambertian :: shade(r, emit);
Vec3f rho = get_diffuse (r);

if (rho [0] + rho[1] + rho[2] > 0.0)

{

Vec3f indirect (0.0f);

for (unsigned int i = 0; i < samples; ++i)
Ray new_ray;
tracer —>trace_cosine_weighted (r, new_ray);

indirect += shade_new_ray (new_ray);

result 4= indirect*rho/static_cast <double >(samples)

result 4= caustics
? caustics —>shade (r, false)
(rho/static_cast <float >(M_PI))*tracer —>caustics_irradiance (r, max_dist ,
photons);

¥

return result;

Vec3f PhotonLambertian ::shade_new_ray (Ray& r) const

{

}
/%

if (r.has_hit)

r.did_hit_diffuse = true;
const Shader* s = tracer —>get_shader (r);
if (s)
return s—>shade (r, false);
else

return tracer —>get_background (r.direction);

return Vec3f (0.0f);

fuglsang begin */

CGLA :: Vec3f PhotonLambertian ::shade(Geometry :: Ray & r, RayDiff & dr,

{

}

CGLA ::Vec3f PhotonLambertian::split_shade(Geometry

{

bool emit) const

if (gather && !r.did_hit_diffuse)
return split_shade(r, emit);

ViewDiffTracer * vdtracer = static_cast<ViewDiffTracer x>(tracer);
if (lvdtracer)
return Shader ::shade(r, dr, emit);
CGLA :: Vec3f result = vdtracer —>global_irradiance (r, dr, max_dist , photons);

result *= get_diffuse (r)/static_cast <float >(M_PI);
return result + Emission::shade(r, !gather);

Ray & r, RayDiff & dr,
bool emit) const

ViewDiffTracer # vdtracer = static_cast<ViewDiffTracer x>(tracer);
if (!vdtracer)
return Shader ::shade (r, dr, emit);
CGLA ::Vec3f result = Lambertian ::shade(r, emit);
CGLA ::Vec3f rho = get_diffuse (r);

if (rho [0] 4+ rho[1] 4+ rho[2] > 0.0)
{

CGLA ::Vec3f indirect (0.0f);

for (unsigned int i = 0; i < samples; ++i)
{
Geometry ::Ray r_split;
RayDiff dr_split = dr;
vdtracer —>trace_cosine_weighted (r, r_split, dr_split);
indirect += shade_new_ray (r_split , dr_split);
}
result 4= indirectxrho/static_cast <double >(samples);
result 4= caustics
? caustics —>shade (r, dr, false)
(rho/static_cast <float >(M_PI))
% vdtracer —>caustics_irradiance (r, dr, max_dist , photons);

i

return result;

55

PN

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

© 00U W

14
15
16
17
18
19
20

21
22

24
25
26
27
28
29
30
31
32

© WO Uk WN

Vec3f PhotonLambertian :: shade_new_ray (Geometry ::Ray & r,

if (r.has_hit)
r.did_hit_diffuse =

true ;

Shader const * s = tracer —>get_shader (r);
it (s)
return s—>shade (r, dr, false);
}
else
return tracer —>get_background (r.direction);
return Vec3f (0.0f);

/% fuglsang end x/

RayDiff & dr)

const

Transparent.h

*

ifndef TRANSPARENTH
define TRANSPARENT_H

*

include "CGLA/Vec3f.h"
include "Geometry/Ray.h"
Geometry/Material .h"
"“PathTracer .h"

Mirror .h"

include
include

P

include

class
{
public:
Transparent (PathTracer
20)
Mirror (pathtracer , max_trace_depth),
splits (no_of_splits)

Transparent public Mirror

pathtracer , int of _splits = 1, int

{13

virtual CGLA ::Vec3f
/+ fuglsang begin */
virtual CGLA ::Vec3f
const ;
/% fuglsang

shade (Geometry :: Ray& r, bool emit = true)

shade (Geometry :: Ray & r, RayDiff & dr,

end %/

protected :
CGLA :: Vec3f
/% fuglsang
CGLA :: Vec3f
/% fuglsang

split_shade (Geometry bool
begin */

split_shade (Geometry :: Ray & r,
end */

::Ray& r, emit) const ;

RayDiff & dr, bool

int
}

#endif

splits;

// TRANSPARENT_H

bool

max_trace_depth =

const ;

emit = true) <

emit) const;

—

Transparent.cpp

#include "CGLA/Vec3f.h"
#include "Geometry/Ray.h"
#include "mt_random.h"
#include " Transparent .h"

/% fuglsang begin x/
#include "ViewDiffTracer .h"

/* fuglsang end x/
using namespace CGLA;
using namespace Geometry ;
Vec3f Transparent :: shade (Ray& r, bool emit) const
if (r.trace_depth >= max_depth)
return Vec3f (0.0f);
if (r.trace_depth < splits)
return split_shade (r, emit);
double R;
Ray refracted;
tracer —>trace_refracted (r, refracted , R);

double xi =
if (xi < R)

mt_random () ;

56

27 Ray reflected;

28 tracer —>trace_reflected(r, reflected);

29 return shade_new_ray(reflected);

30

31 return shade_new_ray (refracted);

32 |}

33

34 | Vec3f Transparent ::split_shade(Ray& r, bool emit) const
35

36 double R;

37 Ray reflected , refracted;

38 tracer —>trace_reflected(r, reflected);

39 tracer —>trace_refracted (r, refracted , R);

40 return Rxshade_new_ray (reflected) + (1.0 — R)xshade_new_ray (refracted);
41

42

43 | /+ fuglsang begin =/
44 | CGLA ::Vec3f Transparent ::shade(Geometry::Ray & r, RayDiff & dr,

45 bool emit) const
46 | {
47 if (r.trace_depth >= max_depth)
48 return Vec3f (0.0f);
49 if (r.trace_depth < splits)
50 return split_shade (r, dr, emit);
51
52 ViewDiffTracer * vdtracer = static_cast <ViewDiffTracer *>(tracer);
53 if (!vdtracer)
54 return Shader ::shade(r, dr, emit);
55
56 double R;
57 Geometry ::Ray r_refracted;
58 RayDiff dr_refracted = dr;
59 vdtracer —>trace_refracted (r, r_refracted , dr_refracted , R);
60
61 double xi = mt_random () ;
62 if (xi < R)
63 {
64 Geometry ::Ray r_reflected;
65 RayDiff dr_reflected = dr;
66 vdtracer —>trace_reflected(r, r_reflected , dr_reflected);
67 return shade_new._ray(r_reflected , dr_reflected);
68 }
69
70 return shade_new_ray(r_refracted , dr_refracted);
71 }
T2
73 CGLA :: Vec3f Transparent ::split_shade (Geometry :: Ray & r, RayDiff & dr,
74 bool emit) const
75 | {
76 ViewDiffTracer * vdtracer = static_cast<ViewDiffTracer x>(tracer);
77 if (!vdtracer)
78 return Shader ::shade(r, dr, emit);
79
80 double R;
81 Geometry Ray r_reflected , r_refracted;
82 RayDiff dr_reflected , dr_refracted;
83
84 dr_reflected dr
85 dr_refracted = dr;
86
87 vdtracer —>trace_reflected (r, r_reflected , dr_reflected);
88 vdtracer —>trace_refracted (r, r_refracted , dr_refracted , R);
89
90 return (shade_new_ray(r_reflected , dr_reflected)=R -+
91 shade_new_ray (r_refracted , dr_refracted)*(1.0 — R));
92 |}
93 | /+ fuglsang end x/
Mirror.h
1 #ifndef MIRROR-H
2 #define MIRROR-H
3
4 #include "CGLA/Vec3f.h"
5 #include "Geometry/Ray.h"
6 #include "PathTracer .h"
7 #include "Collimated.h"
8 #include "Shader .h"
9 #include "RayDiff .h"
10
11 class Mirror : virtual public Shader
12 | {
13 public:
14 Mirror (PathTracers* pathtracer , int max_trace_depth = 20)
15 : tracer (pathtracer), max_depth(max_trace_depth), laser (0)
16 {1}
17
18 virtual CGLA ::Vec3f shade (Geometry ::Ray& r, bool emit = true) const;
19 /x fuglsang begin */
20 virtual CGLA ::Vec3f shade(Geometry::Ray & r, RayDiff & dr, bool emit = true) <=
const ;

57

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

OO AW N

/% fuglsang end x/
void set_laser (Collimated* collimated) { laser = collimated; }

protected :
CGLA :: Vec3f shade_new_ray (Geometry ::Ray& r) const;
/# fuglsang begin x/
CGLA :: Vec3f shade_new_ray (Geometry ::Ray & r, RayDiff & dr) comst;
/% fuglsang end =/

Collimateds laser;
PathTracer* tracer ;
int max_depth;

}s

#endif // MIRROR._H

Mirror.cpp

#include "CGLA/Vec3f.h"
#include "Geometry/Ray.h"

#include "Mirror .h"
/% fuglsang begin x/
#include "ViewDiffTracer .h"

/% fuglsang end x/

using namespace CGLA;
using namespace Geometry;

Vec3f Mirror ::shade (Ray& r, bool emit) const

if (r.trace_depth >= max_depth)
return Vec3f (0.0f);

Ray reflected;
tracer —>trace_reflected (r, reflected);
return shade_new_ray (reflected);

Vec3f Mirror :: shade_new_ray (Ray& r) const

if (r.has_hit)

const Shader* s = tracer —>get_shader (r);
if (s)
return s—>shade (r, true);
¥
else

return tracer —>get_background (r.direction);

return Vec3f (0.0f);

/% fuglsang begin x/
CGLA :: Vec3f Mirror ::shade(Geometry ::Ray & r, RayDiff & dr, bool emit)
{
if (r.trace_depth >= max_depth)
return Vec3f (0.0f);

ViewDiffTracer vdtracer = static_cast<ViewDiffTracer =>(tracer);
if (!vdtracer)
return Shader ::shade (r, dr, emit);

Geometry :: Ray r_reflected;
vdtracer —>trace_reflected (r, r_reflected , dr);
return shade_new_ray(r_reflected , dr);

}

Vec3f Mirror :: shade_new_ray (Geometry::Ray & r, RayDiff & dr) comst

if (r.has_hit)

Shader const * s = tracer —>get_shader (r);
if (s)
return s—>shade (r, dr, true);

else
return tracer —>get_background (r.direction)

return Vec3f (0.0f);

}

/% fuglsang end x/

const

Metal.h

58

©00 oUW

20
21
22
23
24
25
26

R N N N

*

ifndef METALH
METAL_H

*

define

<climits >
"CGLA/Vec3f .h"

#include
#
#include "Geometry/Ray.h"
#
#

include

include "PathTracer .h"
include "Mirror .h"

class Metal public Mirror
public :
Metal (PathTracer

: Mirror (pathtracer ,
{1}

virtual CGLA ::Vec3f

/% fuglsang begin */

virtual CGLA ::Vec3f
const

pathtracer , int
INT_MAX),

no._
splits (no_o

of _splits =

shade (Geometry :: Ray& r, bool

shade (Geometry :: Ray & r,
/% fuglsang end x/
protected:

int splits;
}

#endif // METAL.H

RayDiff & dr,

1)

f_splits)

emit = true) const;

bool emit = true) <+

Metal.cpp

#include "CGLA/Vec3f.h"
#include "Geometry/Ray.h"
#include "mt_random.h"
#include "Metal.h"

/% fuglsang begin x/
#include "ViewDiffTracer
/% fuglsang end =/

h

using
using

namespace
namespace

CGLA ;
Geometry ;
Vec3f Metal :: shade (Ray& r, bool emit) const
Vec3f result (0.0%);

Vec3f R;

Ray reflected;

tracer —>trace_reflected (r,

reflected , R);

if (r.trace_depth >= splits)
double prob = (R[0] + R[1]
double xi = mt_random () ;
if (xi < prob)

result 4= Rxshade_new_ray(reflected)/prob;

+ r[2]) /3.0

}

else
result 4= Rxshade_new_ray (reflected);
return result;

}

/+ fuglsang
CGLA :: Vec3f

{

begin */

Metal :: shade (Geometry :: Ray & r, RayDiff

CGLA ::Vec3f result (0.0f);
CGLA :: Vec3f R;
Geometry :: Ray r_reflected;
RayDiff dr_reflected = dr;
ViewDiffTracer vdtracer =
if (!vdtracer)
return Shader ::shade (r,

dr , emit);

vdtracer —>trace_reflected (r, r_reflected ,

if (r.trace_depth >= splits)
{
double prob = (R[0] + R[1] + R[2])/3.0;
double xi = mt_random ();
if (xi < prob)
result += R*shade_new_ray (r_reflected ,
}
else

result += Rxshade_new_ray (r_reflected ,
return result;

/% fuglsang end x/

static_cast <ViewDiffTracer

dr_reflected ,

& dr, bool emit) const

*>(tracer);

R);

dr _reflected) / prob;

dr_reflected);

59

	Introduction
	Photon mapping
	Photon tracing
	Emission
	Scattering

	Rendering
	Computing the reflected radiance
	Hybrid approaches

	Data structure
	Kd-trees
	Octrees

	Summary

	Photon differentials
	Ray differentials
	Initialization
	Transfer
	Reflection
	Refraction

	Emission and scattering
	Footprint of photon differential in Q

	Computing the reflected radiance

	Incorporating the view ray differential
	Initialization of view ray differential
	Coplanar intersection-weighted photon differentials
	Projection and rotation
	Computing the intersection
	Coverage and centroid
	Computing the reflected radiance

	Multi-sampled photon differentials
	Generating the sampling points
	Computing the reflected radiance

	Implementation and evaluation
	Image comparisons
	Performance discussion

	Conclusion
	References
	Source code

